1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import sys
import six
import math
import glob
import numpy as np
import keras
import tensorflow as tf
from keras import Model
from keras import backend as K
from keras.regularizers import l2
from keras.engine import Layer,InputSpec
from keras.layers.merge import concatenate
from keras.callbacks import TensorBoard,Callback
from keras.layers.advanced_activations import LeakyReLU
from keras.preprocessing.image import ImageDataGenerator
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras import initializers, regularizers, constraints,optimizers
from keras.callbacks import ModelCheckpoint, LearningRateScheduler,TensorBoard
from keras.layers import Add,Input,Conv3D,Convolution3D,Dropout,UpSampling3D,Concatenate,MaxPooling3D,\
GlobalAveragePooling3D,Dense,GlobalMaxPooling3D,Lambda,Activation,Reshape,Permute, PReLU, Deconvolution3D
sys.path.append('../baseLayers/')
from CommonLayers import NormActi,ConvUnit
def get_block(identifier):
if isinstance(identifier,six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
def ShortCut(x1,x2,**kwargs):
padding = kwargs.get('padding')
block_prefix = kwargs.get('block_prefix')
kernel_size = kwargs.get('kernel_size',3)
kernel_initializer = kwargs.get('kernel_initializer','he_normal')
kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4))
DIM1_AXIS,DIM2_AXIS,DIM3_AXIS = 1,2,3
CHANNEL_AXIS = 4
stride_dim1 = math.ceil(x1._keras_shape[DIM1_AXIS]/x2._keras_shape[DIM1_AXIS])
stride_dim2 = math.ceil(x1._keras_shape[DIM2_AXIS]/x2._keras_shape[DIM2_AXIS])
stride_dim3 = math.ceil(x1._keras_shape[DIM3_AXIS]/x2._keras_shape[DIM3_AXIS])
equal_channels = x2._keras_shape[CHANNEL_AXIS]==x1._keras_shape[CHANNEL_AXIS]
add_tensor = x1
if stride_dim1>1 or stride_dim2>1 or stride_dim3>3 or (not equal_channels):
add_tensor = Convolution3D(filters=x2._keras_shape[CHANNEL_AXIS],
kernel_size = kernel_size,
strides = (stride_dim1,stride_dim2,stride_dim3),
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
padding = padding,name='%s_shortcut'%(block_prefix))(x1)
return Add(name='%s_add'%(block_prefix))([add_tensor,x2])
def ResConvBlock(x,**kwargs):
block_func = kwargs.get('block_func')
activation_func = kwargs.get('activation_func')
norm_func = kwargs.get('norm_func')
kernel_size = kwargs.get('kernel_size',3)
atrous_rate = kwargs.get('atrous_rate',1)
padding = kwargs.get('padding')
num_filters = kwargs.get('num_filters')
block_idx = kwargs.get('block_idx')
repetitions = kwargs.get('repetitions')
converted_block_func = get_block(block_func)
block_prefix = 'ResNet_%sBlock%02d'%(block_func,block_idx)
kernel_initializer = kwargs.get('kernel_initializer','he_normal')
kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4))
for layer_idx in range(repetitions):
strides = 1
if layer_idx == 0 and block_idx>1:
strides = 2
if layer_idx == 0 and block_idx == 1:
is_first_layer_of_first_block = True
else:
is_first_layer_of_first_block = False
x = converted_block_func(x,activation_func=activation_func,norm_func=norm_func,num_filters = num_filters,
kernel_size = kernel_size,stride = strides,padding=padding,layer_idx=layer_idx+1,
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
block_prefix=block_prefix)
return x
def BasicBlock(x,**kwargs):
is_first_layer_of_first_block = kwargs.get('is_first_layer_of_first_block',False)
activation_func = kwargs.get('activation_func')
norm_func = kwargs.get('norm_func')
num_filters = kwargs.get('num_filters')
kernel_size = kwargs.get('kernel_size')
stride = kwargs.get('stride')
atrous_rate = kwargs.get('atrous_rate',1)
padding = kwargs.get('padding')
layer_idx = kwargs.get('layer_idx')
block_prefix = kwargs.get('block_prefix')
block_suffix = '%02d'%layer_idx
kernel_initializer = kwargs.get('kernel_initializer','he_normal')
kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4))
if is_first_layer_of_first_block:
x1 = Convolution3D(num_filters=num_filters,kernel_size=kernel_size,padding=padding,strides=stride,
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
name='%s_conv_%s'(block_prefix,block_suffix))(x)
else:
x1 = ConvUnit(x,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters,conv_stride = stride,
kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_basic',
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=layer_idx+1,conv_first=True)
residual = ConvUnit(x1,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters,
kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_residual',
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=layer_idx+1,conv_first=True)
return ShortCut(x,residual,padding=padding,kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
block_prefix=block_prefix+"_layer%02d"%layer_idx)
def BottleNeck(x,**kwargs):
is_first_layer_of_first_block = kwargs.get('is_first_layer_of_first_block',False)
activation_func = kwargs.get('activation_func')
norm_func = kwargs.get('norm_func')
num_filters = kwargs.get('num_filters')
kernel_size = kwargs.get('kernel_size')
stride = kwargs.get('stride')
atrous_rate = kwargs.get('atrous_rate',1)
padding = kwargs.get('padding')
layer_idx = kwargs.get('layer_idx')
block_prefix = kwargs.get('block_prefix')
kernel_initializer = kwargs.get('kernel_initializer','he_normal')
kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4))
block_suffix = '%02d'%layer_idx
# print ('block_suffix and num_filters is ',block_suffix,num_filters)
if is_first_layer_of_first_block:
conv_1_1 = Convolution3D(num_filters=num_filters,kernel_size=1,padding=padding,strides=strides,
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
name='%s_conv1v1_%s'(block_prefix,block_suffix))(x)
else:
conv_1_1 = ConvUnit(x,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters,conv_stride = stride,
kernel_size=1,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_1v1',
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=layer_idx+1,conv_first=True)
conv_3_3 = ConvUnit(conv_1_1,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters*4,
kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_3v3_',
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=layer_idx+1,conv_first=True)
residual = ConvUnit(conv_3_3,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters,
kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_residual',
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=layer_idx+1,conv_first=True)
return ShortCut(x,residual,padding=padding,block_prefix=block_prefix+"_layer%02d"%layer_idx)
class Resnet3DBuilder(object):
def __init__(self,**kwargs):
self.num_classes = kwargs.get('num_classes')
self.classification_layers = kwargs.get('classification_layers')
self.base_filters = kwargs.get('base_filters',32)
self.dropout_rate = kwargs.get('dropout_rate',0)
self.padding = kwargs.get('padding','same')
self.kernel_size = kwargs.get('kernel_size',3)
self.init_kernel_size = kwargs.get('init_kernel_size',3)
self.norm_func = kwargs.get('norm_func')
self.activation_func = kwargs.get('activation_func')
self.kernel_initializer = kwargs.get('kernel_initializer','he_normal')
self.kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4))
def build(self,input_shape,block_func,repetitions,model_prefix):
num_classes = self.num_classes
classification_layers = self.classification_layers
base_filters = self.base_filters
dropout_rate = self.dropout_rate
padding = self.padding
kernel_size = self.kernel_size
init_kernel_size = self.init_kernel_size
norm_func = self.norm_func
activation_func = self.activation_func
kernel_initializer = self.kernel_initializer
kernel_regularizer = self.kernel_regularizer
'''
TODO: change atrous_rate
'''
atrous_rate = 1
input_tensor = Input(shape=input_shape)
block_prefix = 'ResNet_InitBlock'
conv1 = ConvUnit(input_tensor,norm_func=norm_func,activation_func=activation_func,num_filters=base_filters,
kernel_size=init_kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix,
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
layer_idx=1,conv_first=True)
pool1 = MaxPooling3D(strides=2,name='%s_pool'%(block_prefix))(conv1)
block = pool1
layers = [input_tensor,conv1,block]
for block_idx,repeat_time in enumerate(repetitions):
# print ('base_filters*(2**block_idx) of block_idx %02d is '%block_idx,base_filters*(2**block_idx))
block = ResConvBlock(block,block_func=block_func,norm_func=norm_func,activation_func=activation_func,
kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,
kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer,
num_filters=base_filters*(2**(block_idx+1)),block_idx=block_idx+1,repetitions=repeat_time)
layers.append(block)
final_feature = classification_layers(name='%s_classification'%(model_prefix))(block)
if num_classes == 1:
final_acti = 'sigmoid'
else:
final_acti = 'softmax'
final_output = Dense(num_classes,activation=final_acti,name='%s_final_output'%(model_prefix))(final_feature)
layers = layers[:2] + layers[3:]
model = Model(input_tensor,final_output)
return model,layers,[]
def build_resnet_basic(self,input_shape):
return self.build(input_shape,'BasicBlock',[2,2,3,4],'resnet_basic')
def build_resnet_18(self,input_shape):
return self.build(input_shape,'BasicBlock',[3,4,6,3],'resnet18')
def build_resnet_50(self,input_shape):
return self.build(input_shape,'BottleNeck',[3,4,6,3],'resnet50')
def build_resnet_101(self,input_shape):
return self.build(input_shape,'BottleNeck',[3,4,23,3],'resnet101')
def build_resnet_152(self,input_shape):
return self.build(input_shape,'BottleNeck',[3,8,36,3],'resnet152')