1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import sys
import json
import numpy as np
from datetime import datetime
import torch
import torch.distributed
import torch.multiprocessing as mp
import torch.distributed as dist
import logging
import argparse
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), ".."))
__package__ = "lungClassification3D"
from BaseClassifier.Se_Cls import Classification3D
from BaseClassifier.utils.gpu_utils import set_gpu
from k8s_utils import CParamFiller, CK8sPathWrapper
# os.environ['CUDA_VISIBLE_DEVICES'] = "0,1,2,3,4,5,6,7"
def init_dist(backend='nccl',
master_ip='127.0.0.1',
port=29500):
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
os.environ['MASTER_ADDR'] = master_ip
os.environ['MASTER_PORT'] = str(port)
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
num_gpus = torch.cuda.device_count()
local_rank = os.environ['LOCAL_RANK']
deviceid = eval(local_rank) % num_gpus
torch.cuda.set_device(deviceid)
print(fr'dist settings: local_rank {local_rank}, rank {rank}, worldsize {world_size}, gpus {num_gpus}, deviceid {deviceid}')
dist.init_process_group(backend=backend)
return rank, world_size
def get_logger(name, task_name=None):
file_handler = logging.StreamHandler(sys.stdout)
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logger.addHandler(file_handler)
return logger
def _log_msg(strmsg="\n"):
if torch.distributed.get_rank() == 0:
if g_logger is not None:
g_logger.info(strmsg)
else:
print(strmsg)
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, datetime):
return obj.__str__()
else:
return super(MyEncoder, self).default(obj)
# set_gpu(num_gpu=1, used_percent=0.1)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="full functional execute script of Detection module.")
group = parser.add_mutually_exclusive_group()
# ddp
parser.add_argument("--local_rank", default=-1, type=int)
parser.add_argument('--port', default=29500, type=int, help='port of server')
parser.add_argument('--world-size', default=2, type=int)
parser.add_argument('--rank', default=0, type=int)
parser.add_argument('--master_ip', default='127.0.0.1', type=str)
parser.add_argument('--job_data_root', default="/fileser51/baoyc/Work/lung_tasks/GroupLung/Datasets/cls_data/job_data_cls_train_2", type=str)
args = parser.parse_args()
g_pathWrapper = CK8sPathWrapper(args.job_data_root)
config_path = g_pathWrapper.get_input_inputconfig_filepath()
if not os.path.isfile(config_path):
print(fr'given config file {config_path} not exist !')
else:
# print(fr'using config file {config_path} to fill args !')
cfg = CParamFiller.fillin_args(config_path, args)
g_logger = get_logger(__name__)
if cfg.mode == 'training':
rank, world_size = init_dist(backend='nccl', master_ip=args.master_ip, port=args.port)
cfg.rank = rank
cfg.world_size = world_size
cfg.local_rank = os.environ['LOCAL_RANK']
if cfg.mode == 'training':
cfg.training['train_data_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'train_data.npy')
cfg.training['train_info_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'train_info.npy')
cfg.training['val_data_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_data.npy')
cfg.training['val_info_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_info.npy')
# 之后ddp是,需要在判断条件中加入: cfg.rank == 0
if (not os.path.exists(cfg.training['train_data_path']) or not os.path.exists(cfg.training['train_info_path']) or not os.path.exists(cfg.training['val_data_path']) or not os.path.exists(cfg.training['val_info_path'])) and cfg.rank == 0:
# 读取所有的npy信息,并划分训练集和测试集
npy_path = g_pathWrapper.get_output_preprocess_npy_path()
data2info = {}
uids = []
for file in os.listdir(npy_path):
uid = file[:-9]
if uid not in uids:
uids.append(uid)
for uid in uids:
data2info[uid + '_data.npy'] = uid + '_info.npy'
whole_data = []
whole_info = []
whole_label = []
for key, value in data2info.items():
key = os.path.join(npy_path, key)
value = os.path.join(npy_path, value)
whole_data.append(np.load(key))
working_info = np.load(value, allow_pickle=True)
whole_info.append(working_info)
whole_label.append(working_info[:,-2])
whole_data = np.concatenate(whole_data, axis=0)
whole_info = np.concatenate(whole_info, axis=0)
whole_label = np.concatenate(whole_label, axis=0)
# 根据whole_label划分训练集和测试集
label2idx = {}
for label in range(1, cfg.training['num_class'] + 1):
label2idx[label] = []
for idx in range(len(whole_label)):
label2idx[whole_label[idx]].append(idx)
# get train and test npy and info
train_data = []
val_data = []
train_info = []
val_info = []
for key in list(label2idx.keys()):
choice_idxs = list(np.random.choice(label2idx[key], int(len(label2idx[key]) * cfg.split['train']), replace=False))
relax_idxs = [idx for idx in label2idx[key] if idx not in choice_idxs]
for idx in choice_idxs:
train_data.append(whole_data[idx][np.newaxis,:])
train_info.append(whole_info[idx].reshape(-1, len(whole_info[idx])))
for idx in relax_idxs:
val_data.append(whole_data[idx][np.newaxis,:])
val_info.append(whole_info[idx].reshape(-1, len(whole_info[idx])))
train_data = np.concatenate(train_data, axis=0)
train_info = np.concatenate(train_info, axis=0)
val_data = np.concatenate(val_data, axis=0)
val_info = np.concatenate(val_info, axis=0)
np.save(cfg.training['train_data_path'], train_data)
np.save(cfg.training['train_info_path'], train_info)
np.save(cfg.training['val_data_path'], val_data)
np.save(cfg.training['val_info_path'], val_info)
torch.distributed.barrier()
# 设置输出的文件路径
cfg.training['base_path'] = g_pathWrapper.get_output_train_dirpath()
cfg.training['save_path'] = g_pathWrapper.get_output_train_bestmodel_dirpath()
cfg.training['writer_path'] = g_pathWrapper.get_output_train_writer_path()
cfg.training['eval_pmd'] = g_pathWrapper.get_output_eval_performance_md_filepath()
cfg.training['eval_pjson'] = g_pathWrapper.get_output_eval_performance_filepath()
cfg.training['train_metrics'] = g_pathWrapper.get_output_train_trainingmetrics_filepath()
cfg.training['train_result'] = g_pathWrapper.get_output_train_trainresult_filepath()
# 开始训练, mode choice in [training, testing]
train_obj = Classification3D(cfg, cfg.mode, _log_msg)
train_obj()
elif cfg.mode == 'testing':
cfg.testing['test_data_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_data.npy')
cfg.testing['test_info_path'] = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_info.npy')
npy_path = g_pathWrapper.get_output_preprocess_npy_path()
data2info = {}
uids = []
for file in os.listdir(npy_path):
uid = file[:-9]
if uid not in uids:
uids.append(uid)
for uid in uids:
data2info[uid + '_data.npy'] = uid + '_info.npy'
whole_data = []
whole_info = []
whole_label = []
for key, value in data2info.items():
key = os.path.join(npy_path, key)
value = os.path.join(npy_path, value)
whole_data.append(np.load(key))
working_info = np.load(value, allow_pickle=True)
whole_info.append(working_info)
whole_label.append(working_info[:,-2])
whole_data = np.concatenate(whole_data, axis=0)
whole_info = np.concatenate(whole_info, axis=0)
whole_label = np.concatenate(whole_label, axis=0)
# # 根据whole_label划分训练集和测试集
# label2idx = {}
# for label in range(1, cfg.training['num_class'] + 1):
# label2idx[label] = []
# for idx in range(len(whole_label)):
# label2idx[whole_label[idx]].append(idx)
# # get train and test npy and info
# train_data = []
# val_data = []
# train_info = []
# val_info = []
# for key in list(label2idx.keys()):
# choice_idxs = list(np.random.choice(label2idx[key], int(len(label2idx[key]) * cfg.split['train']), replace=False))
# relax_idxs = [idx for idx in label2idx[key] if idx not in choice_idxs]
# for idx in choice_idxs:
# train_data.append(whole_data[idx][np.newaxis,:])
# train_info.append(whole_info[idx].reshape(-1, len(whole_info[idx])))
# for idx in relax_idxs:
# val_data.append(whole_data[idx][np.newaxis,:])
# val_info.append(whole_info[idx].reshape(-1, len(whole_info[idx])))
# train_data = np.concatenate(train_data, axis=0)
# train_info = np.concatenate(train_info, axis=0)
# val_data = np.concatenate(val_data, axis=0)
# val_info = np.concatenate(val_info, axis=0)
all_num = whole_data.shape[0]
inter = all_num // 15
for i in range(15):
if i == 14:
data = whole_data[i*inter: , :]
info = whole_info[i*inter: , :]
else:
data = whole_data[i*inter: (i+1)*inter, :]
info = whole_info[i*inter: (i+1)*inter, :]
print(data.shape, info.shape)
save_data_path = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_data_' + str(i) + '.npy')
save_info_path = os.path.join(g_pathWrapper.get_output_preprocess_preprocessfiledetails_dirpath(), 'val_info_' + str(i) + '.npy')
np.save(save_data_path, data)
np.save(save_info_path, info)
cfg.testing['test_data_path'] = save_data_path
cfg.testing['test_info_path'] = save_info_path
# 设置输出的文件路径
cfg.testing['eval_pmd'] = g_pathWrapper.get_output_eval_performance_md_filepath()
cfg.testing['eval_pjson'] = g_pathWrapper.get_output_eval_performance_filepath()
cfg.testing['eval_result'] = g_pathWrapper.get_output_eval_evalresult_filepath()
cfg.testing['save_dir'] = g_pathWrapper.get_output_eval_dirpath()
# 开始训练, mode choice in [training, testing]
train_obj = Classification3D(cfg, cfg.mode, _log_msg)
train_obj()