1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../')
from net.component_i_2d import RfbfBlock2d, ResBasicBlock2d
from net.component_i_2d import create_conv_block_k3
from net.component_c import init_modules_2d
#用于测试
from cls_utils.data import test_save_ckpt
class FPN(nn.Module):
def __init__(self, n_channels, n_base_filters, groups=1):
super(FPN, self).__init__()
self.down_level1 = nn.Sequential(
RfbfBlock2d(n_channels, n_base_filters, groups=groups)
)
self.down_level2 = nn.Sequential(
ResBasicBlock2d(1 * n_base_filters, 2 * n_base_filters, stride=(2, 2), groups=groups),
ResBasicBlock2d(2 * n_base_filters, 2 * n_base_filters, groups=groups)
)
self.down_level3 = nn.Sequential(
ResBasicBlock2d(2 * n_base_filters, 4 * n_base_filters, stride=(2, 2), groups=groups),
ResBasicBlock2d(4 * n_base_filters, 4 * n_base_filters, groups=groups)
)
self.down_level4 = nn.Sequential(
ResBasicBlock2d(4 * n_base_filters, 8 * n_base_filters, stride=2, groups=groups, se=True),
ResBasicBlock2d(8 * n_base_filters, 8 * n_base_filters, groups=groups, se=True),
ResBasicBlock2d(8 * n_base_filters, 8 * n_base_filters, groups=groups, se=True)
)
self.down_level5 = nn.Sequential(
ResBasicBlock2d(8 * n_base_filters, 16 * n_base_filters, stride=2, groups=groups, se=True),
ResBasicBlock2d(16 * n_base_filters, 8 * n_base_filters, groups=groups, se=True),
ResBasicBlock2d(8 * n_base_filters, 16 * n_base_filters, groups=groups, se=True)
)
self.down_level6 = nn.Sequential(
ResBasicBlock2d(16 * n_base_filters, 16 * n_base_filters, stride=2, groups=groups, se=True)
)
self.down_level7 = nn.Sequential(
ResBasicBlock2d(16 * n_base_filters, 16 * n_base_filters, stride=2, groups=groups, se=True)
)
self.down_level8 = nn.Sequential(
create_conv_block_k3(16 * n_base_filters, 16 * n_base_filters, padding=0, bn=False)
)
def forward(self, x):
down_out1 = self.down_level1(x)
down_out2 = self.down_level2(down_out1)
down_out3 = self.down_level3(down_out2)
down_out4 = self.down_level4(down_out3)
down_out5 = self.down_level5(down_out4)
down_out6 = self.down_level6(down_out5)
down_out7 = self.down_level7(down_out6)
down_out8 = self.down_level8(down_out7)
return down_out8
class Net(nn.Module):
def __init__(self, n_channels=1, n_diff_classes=1, n_base_filters=8):
super(Net, self).__init__()
self.fpn = FPN(8 * n_channels, n_base_filters)
self.diff_classifier = nn.Linear(16 * n_base_filters, n_diff_classes)
#初始化模型参数
init_modules_2d(self.modules())
def forward(self, data):
out = self.fpn(data)
out_avg = F.adaptive_avg_pool2d(out, (1, 1))
out = torch.flatten(out_avg, 1)
diff_output = self.diff_classifier(out)
return diff_output
def net_test():
cfg = dict()
cfg['n_channels'] = 1
cfg['n_diff_classes'] = 1
cfg['training_crop_size'] = [128, 128]
cfg['pretrain_ckpt'] = ''
batch_size = 1
x = torch.rand(batch_size, cfg['n_channels'] * 8,
cfg['training_crop_size'][0], cfg['training_crop_size'][1])
print('x.shape:', x.shape)
model = Net(n_channels=cfg.get('n_channels'), n_diff_classes=cfg.get('n_diff_classes'))
print('模型结构:')
print(model)
print('------------------------------------------')
"""
print(type(model))
for layer in model:
#X = layer(x)
print(layer.__class__.__name__, f'output size: ')"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
x = x.to(device)
print(x.shape, x.device)
#加载模型参数
model = model.to(device)
#print('参数加载成功')
model.eval()
with torch.no_grad():
diff_output = model(x)
print(diff_output.shape)
#test_save_ckpt(model=model)
if __name__ == '__main__':
net_test()