1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def create_conv_block(in_planes, out_planes, kernel_size=1, stride=1, padding=0,
dilation=1, groups=1, bias=False, bn=True, activation=True):
layers = []
layers.append(nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias))
if bn:
layers.append(nn.InstanceNorm3d(out_planes))
if activation:
layers.append(nn.LeakyReLU(inplace=True))
return nn.Sequential(*layers)
def create_conv_block_k1(in_planes, out_planes, kernel_size=1, stride=1, padding=0,
dilation=1, groups=1, bias=False, bn=True, activation=True):
return create_conv_block(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias, bn=bn, activation=activation)
def create_conv_block_k2(in_planes, out_planes, kernel_size=2, stride=1, padding=0,
dilation=1, groups=1, bias=False, bn=True, activation=True):
return create_conv_block(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias, bn=bn, activation=activation)
def create_conv_block_k3(in_planes, out_planes, kernel_size=3, stride=1, padding=1,
dilation=1, groups=1, bias=False, bn=True, activation=True):
return create_conv_block(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias, bn=bn, activation=activation)
class RfbfBlock3d(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, groups=1, droprate=0):
super(RfbfBlock3d, self).__init__()
inter_planes = max(int(np.ceil(out_planes / 8)), 1)
self.groups = groups
self.group_num = inter_planes // groups
self.droprate = droprate
self.branch1 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
dilation=(1, 1, 1), groups=groups)
)
self.branch2 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 4, 4),
dilation=(1, 2, 2), groups=groups)
)
self.branch3 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 6, 6),
dilation=(1, 3, 3), groups=groups)
)
self.branch4 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 7, 7), padding=(1, 3, 3),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
dilation=(1, 1, 1), groups=groups)
)
self.branch5 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 7, 7), padding=(1, 3, 3),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 4, 4),
dilation=(1, 2, 2), groups=groups)
)
self.branch6 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(3, 7, 7), padding=(1, 3, 3),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 6, 6),
dilation=(1, 3, 3), groups=groups)
)
self.branch7 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(5, 9, 9), padding=(2, 4, 4),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 2, 2),
dilation=(1, 1, 1), groups=groups)
)
self.branch8 = nn.Sequential(
create_conv_block(in_planes, inter_planes, kernel_size=(5, 9, 9), padding=(2, 4, 4),
stride=stride, groups=groups),
create_conv_block(inter_planes, inter_planes, kernel_size=(3, 5, 5), padding=(1, 4, 4),
dilation=(1, 2, 2), groups=groups)
)
def forward(self, x):
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
x4 = self.branch4(x)
x5 = self.branch5(x)
x6 = self.branch6(x)
x7 = self.branch7(x)
x8 = self.branch8(x)
if self.groups == 1:
out = torch.cat((x1, x2, x3, x4, x5, x6, x7, x8), 1)
else:
for group in range(self.groups):
group_out = torch.cat((x1[:, group * self.group_num:(group + 1) * self.group_num],
x2[:, group * self.group_num:(group + 1) * self.group_num],
x3[:, group * self.group_num:(group + 1) * self.group_num],
x4[:, group * self.group_num:(group + 1) * self.group_num],
x5[:, group * self.group_num:(group + 1) * self.group_num],
x6[:, group * self.group_num:(group + 1) * self.group_num],
x7[:, group * self.group_num:(group + 1) * self.group_num],
x8[:, group * self.group_num:(group + 1) * self.group_num]), 1)
if group == 0:
out = group_out
else:
out = torch.cat((out, group_out), 1)
if self.droprate > 0:
out = F.dropout3d(out, p=self.droprate, training=self.training)
return out
class RfbeBlock3d(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, groups=1):
super(RfbeBlock3d, self).__init__()
inter_planes = max(int(np.ceil(out_planes / 8)), 2)
self.groups = groups
self.group_num = 2 * inter_planes // groups
self.branch1 = nn.Sequential(
create_conv_block(in_planes, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=1, dilation=1, groups=groups)
)
self.branch2 = nn.Sequential(
create_conv_block(in_planes, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=2, dilation=2, groups=groups)
)
self.branch3 = nn.Sequential(
create_conv_block(in_planes, 2 * inter_planes, kernel_size=5, stride=stride, padding=2, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=3, dilation=3, groups=groups)
)
self.branch4 = nn.Sequential(
create_conv_block(in_planes, 2 * inter_planes, kernel_size=7, stride=stride, padding=3, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=4, dilation=4, groups=groups)
)
self.concat_conv = create_conv_block_k1(8 * inter_planes, out_planes, groups=groups, activation=False)
self.shortcut = create_conv_block_k1(in_planes, out_planes, stride=stride, groups=groups, activation=False)
def forward(self, x):
identity = self.shortcut(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
x4 = self.branch4(x)
if self.groups == 1:
out = torch.cat((x1, x2, x3, x4), 1)
else:
for group in range(self.groups):
group_out = torch.cat((x1[:, group * self.group_num:(group + 1) * self.group_num],
x2[:, group * self.group_num:(group + 1) * self.group_num],
x3[:, group * self.group_num:(group + 1) * self.group_num],
x4[:, group * self.group_num:(group + 1) * self.group_num]), 1)
if group == 0:
out = group_out
else:
out = torch.cat((out, group_out), 1)
out = self.concat_conv(out)
out = out + identity
out = F.leaky_relu(out, inplace=True)
return out
class RfbBlock3d(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, groups=1):
super(RfbBlock3d, self).__init__()
inter_planes = max(int(np.ceil(out_planes / 8)), 2)
self.groups = groups
self.group_num = 2 * inter_planes // groups
self.branch1 = nn.Sequential(
create_conv_block_k1(in_planes, 2 * inter_planes, stride=stride, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=1, dilation=1, groups=groups)
)
self.branch2 = nn.Sequential(
create_conv_block_k1(in_planes, inter_planes, groups=groups),
create_conv_block(inter_planes, 2 * inter_planes, kernel_size=3, stride=stride, padding=1, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=2, dilation=2, groups=groups)
)
self.branch3 = nn.Sequential(
create_conv_block_k1(in_planes, inter_planes, groups=groups),
create_conv_block(inter_planes, 2 * inter_planes, kernel_size=5, stride=stride, padding=2, groups=groups),
create_conv_block_k3(2 * inter_planes, 2 * inter_planes, padding=3, dilation=3, groups=groups)
)
self.concat_conv = create_conv_block_k1(6 * inter_planes, out_planes, groups=groups, activation=False)
self.shortcut = create_conv_block_k1(in_planes, out_planes, stride=stride, groups=groups, activation=False)
def forward(self, x):
identity = self.shortcut(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
if self.groups == 1:
out = torch.cat((x1, x2, x3), 1)
else:
for group in range(self.groups):
group_out = torch.cat((x1[:, group * self.group_num:(group + 1) * self.group_num],
x2[:, group * self.group_num:(group + 1) * self.group_num],
x3[:, group * self.group_num:(group + 1) * self.group_num]), 1)
if group == 0:
out = group_out
else:
out = torch.cat((out, group_out), 1)
out = self.concat_conv(out)
out = out + identity
out = F.leaky_relu(out, inplace=True)
return out
class ResBasicBlock3d(nn.Module):
def __init__(self, in_planes, out_planes, stride=1, groups=1, droprate=0, se=False):
super(ResBasicBlock3d, self).__init__()
self.conv1 = create_conv_block_k3(in_planes, out_planes, stride=stride, groups=groups)
self.conv2 = create_conv_block_k3(out_planes, out_planes, groups=groups, activation=False)
self.shortcut = None
if stride != 1 or in_planes != out_planes:
self.shortcut = create_conv_block_k1(in_planes, out_planes, stride=stride, groups=groups, activation=False)
self.droprate = droprate
self.se = se
if se:
self.fc1 = nn.Linear(in_features=out_planes, out_features=out_planes // 4)
self.fc2 = nn.Linear(in_features=out_planes // 4, out_features=out_planes)
def forward(self, x):
identity = self.shortcut(x) if self.shortcut is not None else x
out = self.conv1(x)
if self.droprate > 0:
out = F.dropout3d(out, p=self.droprate, training=self.training)
out = self.conv2(out)
if self.se:
original_out = out
out = F.adaptive_avg_pool3d(out, (1, 1, 1))
out = torch.flatten(out, 1)
out = self.fc1(out)
out = F.leaky_relu(out, inplace=True)
out = self.fc2(out)
out = out.sigmoid()
out = out.view(out.size(0), out.size(1), 1, 1, 1)
out = out * original_out
out = out + identity
out = F.leaky_relu(out, inplace=True)
return out
class UpBlock3d(nn.Module):
def __init__(self, in_planes1, in_planes2, out_planes, groups=1, scale_factor=2):
super(UpBlock3d, self).__init__()
self.scale_factor = scale_factor
self.conv1 = create_conv_block_k3(in_planes1, out_planes, groups=groups, activation=False)
self.conv2 = create_conv_block_k3(in_planes2, out_planes, groups=groups, activation=False)
def forward(self, x1, x2):
if self.scale_factor != 1 and self.scale_factor != (1, 1, 1):
x1 = F.interpolate(x1, scale_factor=self.scale_factor, mode='nearest')
out1 = self.conv1(x1)
out2 = self.conv2(x2)
out = out1 + out2
out = F.leaky_relu(out, inplace=True)
return out