GuideDepartment.py 2.64 KB
import pandas as pd
import jieba.analyse
from hanziconv import HanziConv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import KNeighborsClassifier
'''
科室推荐
'''

def fenci():
    df = pd.read_excel('外科.xlsx', sheet_name='外科', na_filter=False)

    text = df['titleask'].tolist()

    # 中文停词,哈工大停词,四川机器智能实验室,百度停词
    # 加医学方面的停词,提高模型的准确性:填写
    stopwords = [line.strip() for line in open('../datas/hit_stopwords.txt', 'r', encoding='utf-8').readlines()]
    result = []
    # for line in text:
    #     seg_list = jieba.cut(HanziConv.toSimplified(line))
    #     seg_list = [i for i in seg_list if i not in stopwords]
    #     result.append(' '.join(seg_list))
    for line in text:
        if isinstance(line, str):
            seg_list = jieba.cut(HanziConv.toSimplified(line))
            seg_list = [i for i in seg_list if i not in stopwords]
            result.append(' '.join(seg_list))

    df_result = pd.DataFrame(result, columns=['ask'])
    df_result.to_excel('外科5-14000.xlsx', sheet_name='Sheet2', index=False)


def fencitest():
    df = pd.read_excel('测试数据.xlsx', sheet_name='Sheet1', engine='openpyxl')

    text = df['test'].tolist()
    stopwords = [line.strip() for line in open('../datas/hit_stopwords.txt', 'r', encoding='utf-8').readlines()]
    result = []
    for line in text:
        if isinstance(line, str):
            seg_list = jieba.cut(HanziConv.toSimplified(line))
            seg_list = [i for i in seg_list if i not in stopwords]
            result.append(' '.join(seg_list))

    df_result = pd.DataFrame(result, columns=['test'])
    df_result.to_excel('测试数据.xlsx', sheet_name='Sheet1', index=False)


def keshi():
    # 构建训练集和测试集的数据
    df = pd.read_excel('外科5-14000.xlsx', sheet_name='Sheet2')
    train_data = df['ask'].values
    train_labels = df['label'].values
    df1 = pd.read_excel('测试数据.xlsx', sheet_name='Sheet1')
    test_data = df1['test'].values

    test_labels = []

    # 使用TF-IDF向量化文本数据
    vectorizer = TfidfVectorizer()
    train_vectors = vectorizer.fit_transform(train_data)
    test_vectors = vectorizer.transform(test_data)

    # 使用KNN算法对训练集进行训练
    k = 4 # 选择K值为3
    knn_classifier = KNeighborsClassifier(n_neighbors=k)
    knn_classifier.fit(train_vectors, train_labels)

    # 对测试集进行分类预测
    test_predictions    = knn_classifier.predict(test_vectors)
    print("预测标签:", test_predictions)


if __name__ == '__main__':
    # fenci()
    # fencitest()
    keshi()