CRF.py 19 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Orginal implementation from keras_contrib/layers/crf
# ==============================================================================
"""Implementing Conditional Random Field layer."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
from tensorflow_addons.text.crf import crf_decode, crf_log_likelihood
from tensorflow_addons.utils import keras_utils


# @keras_utils.register_keras_custom_object
class CRF(tf.keras.layers.Layer):
    """Linear chain conditional random field (CRF).

    Examples:

    ```python
        from tensorflow_addons.layers import CRF

        model = Sequential()
        model.add(Embedding(3001, 300, mask_zero=True)

        crf = CRF(10, name='crf_layer')
        model.add(crf)

        model.compile('adam', loss={'crf_layer': crf.loss})

        model.fit(x, y)
    ```

    Arguments:
        units: Positive integer, dimensionality of the output space,
            should equal to tag num.
        chain_initializer: Initializer for the `chain_kernel` weights matrix,
            used for the CRF chain energy.
            (see [initializers](../initializers.md)).
        chain_regularizer: Regularizer function applied to
            the `chain_kernel` weights matrix.
        chain_constraint: Constraint function applied to
            the `chain_kernel` weights matrix.
        use_boundary: Boolean (default True), indicating if trainable
            start-end chain energies should be added to model.
        boundary_initializer: Initializer for the `left_boundary`,
            'right_boundary' weights vectors,
            used for the start/left and end/right boundary energy.
        boundary_regularizer: Regularizer function applied to
            the 'left_boundary', 'right_boundary' weight vectors.
        boundary_constraint: Constraint function applied to
            the `left_boundary`, `right_boundary` weights vectors.
        use_kernel: Boolean (default True), indicating if apply
            a fully connected layer before CRF op.
        kernel_initializer: Initializer for the `kernel` weights matrix,
            used for the linear transformation of the inputs.
        kernel_regularizer: Regularizer function applied to
            the `kernel` weights matrix.
        kernel_constraint: Constraint function applied to
            the `kernel` weights matrix.
        use_bias: Boolean (default True), whether the layer uses a bias vector.
        bias_initializer: Initializer for the bias vector.
        bias_regularizer: Regularizer function applied to the bias vector.
        bias_constraint: Constraint function applied to the bias vector.
        activation: default value is 'linear', Activation function to use.

    Input shape:
        3D tensor with shape: `(batch_size, sequence_length, feature_size)`.

    Output shape:
        2D tensor (dtype: int32) with shape: `(batch_size, sequence_length)`.

    Masking:
        This layer supports masking
        (2D tensor, shape: `(batch_size, sequence_length)`)
        for input data with a variable number of timesteps.
        This layer output same make tensor,
        NOTICE this may cause issue when you
        use some keras loss and metrics function which usually expect 1D mask.

    Loss function:
        Due to the TF 2.0 version support eager execution be default,
        there is no way can implement CRF loss as independent loss function.
        Thus, user should use loss method of this layer.
        See Examples (above) for detailed usage.

    References:
        - [Conditional Random Field](https://en.wikipedia.org/wiki/Conditional_random_field)
    """

    def __init__(self,
                 units,
                 chain_initializer="orthogonal",
                 chain_regularizer=None,
                 chain_constraint=None,
                 use_boundary=True,
                 boundary_initializer="zeros",
                 boundary_regularizer=None,
                 boundary_constraint=None,
                 use_kernel=True,
                 kernel_initializer="glorot_uniform",
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 use_bias=True,
                 bias_initializer="zeros",
                 bias_regularizer=None,
                 bias_constraint=None,
                 activation="linear",
                 **kwargs):
        super(CRF, self).__init__(**kwargs)

        # setup mask supporting flag, used by base class (the Layer)
        # because base class's init method will set it to False unconditionally
        # So this assigned must be executed after call base class's init method
        self.supports_masking = True

        self.units = units  # numbers of tags

        self.use_boundary = use_boundary
        self.use_bias = use_bias
        self.use_kernel = use_kernel

        self.activation = tf.keras.activations.get(activation)

        self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)
        self.chain_initializer = tf.keras.initializers.get(chain_initializer)
        self.boundary_initializer = tf.keras.initializers.get(
            boundary_initializer)
        self.bias_initializer = tf.keras.initializers.get(bias_initializer)

        self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
        self.chain_regularizer = tf.keras.regularizers.get(chain_regularizer)
        self.boundary_regularizer = tf.keras.regularizers.get(
            boundary_regularizer)
        self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)

        self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)
        self.chain_constraint = tf.keras.constraints.get(chain_constraint)
        self.boundary_constraint = tf.keras.constraints.get(
            boundary_constraint)
        self.bias_constraint = tf.keras.constraints.get(bias_constraint)

        # values will be assigned in method
        self.input_spec = None

        # value remembered for loss/metrics function
        self.potentials = None
        self.sequence_length = None
        self.mask = None

        # global variable
        self.kernel = None
        self.chain_kernel = None
        self.bias = None
        self.left_boundary = None
        self.right_boundary = None

    def build(self, input_shape):
        input_shape = tuple(tf.TensorShape(input_shape).as_list())

        # see API docs of InputSpec for more detail
        self.input_spec = [tf.keras.layers.InputSpec(shape=input_shape)]

        feature_size = input_shape[-1]

        if self.use_kernel:
            # weights that mapping arbitrary tensor to correct shape
            self.kernel = self.add_weight(
                shape=(feature_size, self.units),
                name="kernel",
                initializer=self.kernel_initializer,
                regularizer=self.kernel_regularizer,
                constraint=self.kernel_constraint,
            )

        # weights that work as transfer probability of each tags
        self.chain_kernel = self.add_weight(
            shape=(self.units, self.units),
            name="chain_kernel",
            initializer=self.chain_initializer,
            regularizer=self.chain_regularizer,
            constraint=self.chain_constraint,
        )

        # bias that works with self.kernel
        if self.use_kernel and self.use_bias:
            self.bias = self.add_weight(
                shape=(self.units, ),
                name="bias",
                initializer=self.bias_initializer,
                regularizer=self.bias_regularizer,
                constraint=self.bias_constraint,
            )
        else:
            self.bias = 0

        # weight of <START> to tag probability and tag to <END> probability
        if self.use_boundary:
            self.left_boundary = self.add_weight(
                shape=(self.units, ),
                name="left_boundary",
                initializer=self.boundary_initializer,
                regularizer=self.boundary_regularizer,
                constraint=self.boundary_constraint,
            )
            self.right_boundary = self.add_weight(
                shape=(self.units, ),
                name="right_boundary",
                initializer=self.boundary_initializer,
                regularizer=self.boundary_regularizer,
                constraint=self.boundary_constraint,
            )

        # or directly call self.built = True
        super(CRF, self).build(input_shape)

    def call(self, inputs, mask=None, **kwargs):
        # mask: Tensor(shape=(batch_size, sequence_length), dtype=bool) or None

        if mask is not None:
            assert (tf.keras.backend.ndim(mask) == 2
                    ), "Input mask to CRF must have dim 2 if not None"

        # left padding of mask is not supported, due the underline CRF function
        # detect it and report it to user
        first_mask = None
        if mask is not None:
            left_boundary_mask = self._compute_mask_left_boundary(mask)
            first_mask = left_boundary_mask[:, 0]

        # remember this value for later use
        self.mask = mask

        if first_mask is not None:
            with tf.control_dependencies([
                    tf.debugging.assert_equal(
                        tf.math.reduce_all(first_mask),
                        tf.constant(True),
                        message="Currently, CRF layer do not support left padding"
                    )
            ]):
                self.potentials = self._dense_layer(inputs)
        else:
            self.potentials = self._dense_layer(inputs)

        # appending boundary probability info
        if self.use_boundary:
            self.potentials = self.add_boundary_energy(
                self.potentials, mask, self.left_boundary, self.right_boundary)

        self.sequence_length = self._get_sequence_length(inputs, mask)

        decoded_sequence, _ = self.get_viterbi_decoding(
            self.potentials, self.sequence_length)

        return decoded_sequence

    def _get_sequence_length(self, input_, mask):
        """
        Currently underline CRF fucntion (provided by tensorflow_addons.text.crf)
        do not support bi-direction masking (left padding / right padding),
        it support right padding by tell it the sequence length.

        this function is compute the sequence length from input and mask.
        """
        if mask is not None:
            int_mask = tf.keras.backend.cast(mask, tf.int8)
            sequence_length = self.mask_to_sequence_length(int_mask)
        else:
            # make a mask tensor from input, then used to generate sequence_length
            input_energy_shape = tf.shape(input_)
            raw_input_shape = tf.slice(input_energy_shape, [0], [2])
            alt_mask = tf.ones(raw_input_shape)

            sequence_length = self.mask_to_sequence_length(alt_mask)

        return sequence_length

    def mask_to_sequence_length(self, mask):
        """
        compute sequence length from mask
        """
        sequence_length = tf.keras.backend.cast(
            tf.keras.backend.sum(mask, 1), tf.int64)
        return sequence_length

    @staticmethod
    def _compute_mask_right_boundary(mask):
        """
        input mask: 0011100, output left_boundary: 0000100
        """
        # shift mask to left by 1: 0011100 => 0111000
        offset = 1
        left_shifted_mask = tf.keras.backend.concatenate(
            [mask[:, offset:],
             tf.keras.backend.zeros_like(mask[:, :offset])],
            axis=1)

        # TODO(howl-anderson): for below code
        # Original code in keras_contrib:
        # end_mask = K.cast(
        #   K.greater(self.shift_left(mask), mask),
        #   K.floatx()
        # )
        # May have a bug, it's better confirmed
        # by the original keras_contrib maintainer
        # Luiz Felix (github: lzfelix),
        # mailed him already and waiting for reply.

        # 0011100 > 0111000 => 0000100
        right_boundary = tf.keras.backend.greater(mask, left_shifted_mask)

        return right_boundary

    @staticmethod
    def _compute_mask_left_boundary(mask):
        """
        input mask: 0011100, output left_boundary: 0010000
        """
        # shift mask to right by 1: 0011100 => 0001110
        offset = 1
        right_shifted_mask = tf.keras.backend.concatenate(
            [tf.keras.backend.zeros_like(mask[:, :offset]), mask[:, :-offset]],
            axis=1)

        # 0011100 > 0001110 => 0010000
        left_boundary = tf.keras.backend.greater(mask, right_shifted_mask)

        return left_boundary

    def add_boundary_energy(self, potentials, mask, start, end):
        def expend_scalar_to_3d(x):
            # expend tensor from shape (x, ) to (1, 1, x)
            return tf.keras.backend.expand_dims(
                tf.keras.backend.expand_dims(x, 0), 0)

        start = expend_scalar_to_3d(start)
        end = expend_scalar_to_3d(end)
        if mask is None:
            potentials = tf.keras.backend.concatenate(
                [potentials[:, :1, :] + start, potentials[:, 1:, :]], axis=1)
            potentials = tf.keras.backend.concatenate(
                [potentials[:, :-1, :], potentials[:, -1:, :] + end], axis=1)
        else:
            mask = tf.keras.backend.expand_dims(
                tf.keras.backend.cast(mask, start.dtype), axis=-1)
            start_mask = tf.keras.backend.cast(
                self._compute_mask_left_boundary(mask),
                start.dtype,
            )

            end_mask = tf.keras.backend.cast(
                self._compute_mask_right_boundary(mask),
                end.dtype,
            )
            potentials = potentials + start_mask * start
            potentials = potentials + end_mask * end
        return potentials

    def get_viterbi_decoding(self, potentials, sequence_length):
        # decode_tags: A [batch_size, max_seq_len] matrix, with dtype `tf.int32`
        decode_tags, best_score = crf_decode(potentials, self.chain_kernel,
                                             sequence_length)

        return decode_tags, best_score

    def get_config(self):
        # used for loading model from disk
        config = {
            "units":
            self.units,
            "use_boundary":
            self.use_boundary,
            "use_bias":
            self.use_bias,
            "use_kernel":
            self.use_kernel,
            "kernel_initializer":
            tf.keras.initializers.serialize(self.kernel_initializer),
            "chain_initializer":
            tf.keras.initializers.serialize(self.chain_initializer),
            "boundary_initializer":
            tf.keras.initializers.serialize(self.boundary_initializer),
            "bias_initializer":
            tf.keras.initializers.serialize(self.bias_initializer),
            "activation":
            tf.keras.activations.serialize(self.activation),
            "kernel_regularizer":
            tf.keras.regularizers.serialize(self.kernel_regularizer),
            "chain_regularizer":
            tf.keras.regularizers.serialize(self.chain_regularizer),
            "boundary_regularizer":
            tf.keras.regularizers.serialize(self.boundary_regularizer),
            "bias_regularizer":
            tf.keras.regularizers.serialize(self.bias_regularizer),
            "kernel_constraint":
            tf.keras.constraints.serialize(self.kernel_constraint),
            "chain_constraint":
            tf.keras.constraints.serialize(self.chain_constraint),
            "boundary_constraint":
            tf.keras.constraints.serialize(self.boundary_constraint),
            "bias_constraint":
            tf.keras.constraints.serialize(self.bias_constraint)
        }
        base_config = super(CRF, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

    def compute_output_shape(self, input_shape):
        output_shape = input_shape[:2]
        return output_shape

    def compute_mask(self, input_, mask=None):
        # """
        # Set output mask to be 1D tensor, so loss method of this class can work without error.
        # But there is big short come:
        # layer, loss and metrics after this layer
        # can not access meaningful mask. Which mean they can not work correctly.
        # User only can get correct loss and metrics value from methods of this layer.
        # """
        # if mask is not None:
        #     # transform mask from shape (?, ?) to (?, )
        #     new_mask = tf.keras.backend.any(mask, axis=1)
        #     return new_mask

        return mask

    def get_negative_log_likelihood(self, y_true):
        # TODO: remove typing cast
        self.potentials = tf.keras.backend.cast(self.potentials, tf.float32)
        y_true = tf.keras.backend.cast(y_true, tf.int32)
        self.sequence_length = tf.keras.backend.cast(self.sequence_length,
                                                     tf.int32)
        # self.chain_kernel = tf.keras.backend.cast(self.chain_kernel,
        #                                           tf.float32)

        log_likelihood, _ = crf_log_likelihood(
            self.potentials, y_true, self.sequence_length, self.chain_kernel)

        return -log_likelihood

    def get_loss(self, y_true, y_pred):
        # we don't use y_pred, but caller pass it anyway, ignore it
        return self.get_negative_log_likelihood(y_true)

    def get_accuracy(self, y_true, y_pred):
        judge = tf.keras.backend.cast(
            tf.keras.backend.equal(y_pred, y_true), tf.keras.backend.floatx())
        if self.mask is None:
            return tf.keras.backend.mean(judge)
        else:
            mask = tf.keras.backend.cast(self.mask, tf.keras.backend.floatx())
            return (tf.keras.backend.sum(judge * mask) /
                    tf.keras.backend.sum(mask))

    def _dense_layer(self, input_):
        if self.use_kernel:
            output = self.activation(
                tf.keras.backend.dot(input_, self.kernel) + self.bias)
        else:
            output = input_

        return tf.keras.backend.cast(output, self.chain_kernel.dtype)

    def __call__(self, inputs, *args, **kwargs):
        outputs = super(CRF, self).__call__(inputs, *args, **kwargs)

        # A hack that add _keras_history to EagerTensor, make it more like normal Tensor
        for tensor in tf.nest.flatten(outputs):
            if not hasattr(tensor, '_keras_history'):
                tensor._keras_history = (self, 0, 0)

        return outputs

    @property
    def _compute_dtype(self):
        # fixed output dtype from underline CRF functions
        return tf.int32