model.py 32.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
##
import os
import re

os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import splittxt
import tools
import predict
import tensorflow


##
class Oral:
    def __init__(self, ImagingFindings, ImagingConclusion, verbose = True):
        self.verbose = verbose
        self._Conclusion = ''
        self._Finding = ''
        
        if '送检淋巴结' in ImagingConclusion:
            self._Conclusion = ImagingConclusion
            self._Finding = ImagingFindings
        else:
            self._Conclusion = ImagingFindings
            self._Finding = ImagingConclusion
        
        self._Conclusion = self._Conclusion.strip('"').strip() \
            .replace("大于", ">").replace("小于", "<").replace("大于等于", "≥").replace("小于等于", "≤").replace(">", ">").replace(
            "<", "<")
        self._Finding = self._Finding.strip('"').strip() \
            .replace("大于", ">").replace("小于", "<").replace("大于等于", "≥").replace("小于等于", "≤").replace(">", ">").replace(
            "<", "<")
        
        self.ImmunohistochemistryContent = ''
        self.MolecularResultsContent = ''
        self.Degree = ''
        self.CuttingEdgePathologyOther = ''
        self.CuttingEdgePathology = ''
        
        _, CuttingEdge1, _, MolecularResults1, Immunohistochemistry1 = splittxt.splittxt(
            self._Conclusion)
        _, CuttingEdge2, _, MolecularResults2, Immunohistochemistry2 = splittxt.splittxt(
            self._Finding)
        
        self.ConclusionCuttingEdge = CuttingEdge1 + CuttingEdge2
        self.ConclusionMolecularResults = MolecularResults1 + MolecularResults2
        if Immunohistochemistry1 != Immunohistochemistry2:
            self.ConclusionImmunohistochemistry = Immunohistochemistry1 + Immunohistochemistry2
        else:
            self.ConclusionImmunohistochemistry = Immunohistochemistry1
        
        # self.ConclusionFrist, self.ConclusionCuttingEdge, self.ConclusionMolecularResults, self.ConclusionImmunohistochemistry = splittxt.splittxt(
        #     self._Conclusion + self._Finding)
        
        # self.FindingFrist, self.FindingCuttingEdge, self.FindingMolecularResults, self.FindingImmunohistochemistry = splittxt.splittxt(
        #     self._Finding + self._Conclusion)
        
        if self.ConclusionCuttingEdge != "":
            self.CuttingEdgePathology = tools.CuttingEdgePathology(self.ConclusionCuttingEdge)  # 术后病理切缘
            self.CuttingEdgePathologyOther = ""
            if self.CuttingEdgePathology == "其他情况":
                CuttingEdgeID = tools.FindChar(self.ConclusionCuttingEdge)[0] + 1
                self.CuttingEdgePathologyOther = self.ConclusionCuttingEdge[CuttingEdgeID:]  # 其他术后病理切缘情况
            self.Degree = tools.findDegree(self.ConclusionCuttingEdge)  # 黏膜上皮异常增生程度
            # print(self.Degree)
            self.Degree = self.getDegree(self.Degree)
        if self.CuttingEdgePathologyOther == '':
            self.CuttingEdgePathologyOther = '无'
        
        # 分子结果
        if self.ConclusionMolecularResults != "":
            MolecularResultsID = tools.FindChar(self.ConclusionMolecularResults)[0]
            self.MolecularResultsContent = self.ConclusionMolecularResults[MolecularResultsID:]  # 分子结果
        if self.MolecularResultsContent == "":
            self.MolecularResultsContent = "无"
        
        # 免疫组化
        # print(self.ConclusionImmunohistochemistry)
        if self.ConclusionImmunohistochemistry != "":
            self.Immunohistochemistryisornot = "有"  # 免疫组化有无
            # print(self.Immunohistochemistryisornot)
            # ImmunohistochemistryID = tools.FindChar(self.ConclusionImmunohistochemistry)[0]
            # print(tools.FindChar(self.ConclusionImmunohistochemistry))
            # print(self.ConclusionImmunohistochemistry)
            # print(self.ConclusionImmunohistochemistry[ImmunohistochemistryID:])
            # self.ImmunohistochemistryContent = self.ConclusionImmunohistochemistry[ImmunohistochemistryID:]  # 免疫组化结果
            self.ImmunohistochemistryContent = self.ConclusionImmunohistochemistry  # 免疫组化结果
        
        else:
            self.Immunohistochemistryisornot = "无"  # 免疫组化有无
        
        # self.print_original_data()
        
        self.ConclusionFrist, _, self.ConclusionCuttingLymph, _, _ = splittxt.splittxt(
            self._Conclusion)
        
        self.FindingFrist, _, self.FindingCuttingLymph, _, _ = splittxt.splittxt(
            self._Finding)
        
        self.ConclusionFrist = self.ConclusionFrist.replace('肿物', '肿块').replace('\n', '。')
        tensorflow.keras.backend.clear_session()
        if self.verbose:
            print(self.ConclusionFrist + self.ConclusionCuttingLymph)
        ans, y_pre = predict.predict(self.ConclusionFrist + self.ConclusionCuttingLymph)
        self._y_pre = predict.output(self.ConclusionFrist + self.ConclusionCuttingLymph, y_pre)
        if self.verbose:
            self.print_list_item(ans)
        
        self.FindingFrist = self.FindingFrist.replace('肿物', '肿块').replace('\n', '。')
        tensorflow.keras.backend.clear_session()
        if self.verbose:
            print(self.FindingFrist + self.FindingCuttingLymph)
        ans_o, y_pre_o = predict.predict(self.FindingFrist + self.FindingCuttingLymph)
        self._y_pre_o = predict.output(self.FindingFrist + self.FindingCuttingLymph, y_pre_o)
        if self.verbose:
            self.print_list_item(ans_o)
        
        tensorflow.keras.backend.clear_session()
        if self.verbose:
            print(self.ConclusionCuttingLymph)
        ans_lymph, y_pre_lymph = predict.predict(self.ConclusionCuttingLymph)
        self._y_pre_lymph = predict.output(self.ConclusionCuttingLymph, y_pre_lymph)
        # if self.verbose:
        #     self.print_list_item(ans_lymph)
    
    def _get_entity_with_O(self, y_pre, with_o):
        all = []
        if with_o:
            for i in range(len(y_pre)):
                if i == 0:
                    # print('O', ImagingConclusionFrist[0:y_pre[i][2]].replace('\n', ' '), str(0), str(y_pre[i][2]))
                    # print(y_pre[i][0], y_pre[i][1], y_pre[i][2], y_pre[i][3])
                    all.append({'tag': 'O', 'words': self.FindingFrist[0:y_pre[i][2]].replace('\n', ' '), 'h': 0,
                                'r': y_pre[i][2]})
                    all.append({'tag': y_pre[i][0], 'words': y_pre[i][1], 'h': y_pre[i][2], 'r': y_pre[i][3]})
                else:
                    O_h = y_pre[i - 1][3] + 1
                    O_r = y_pre[i][2]
                    # print('O', ImagingConclusionFrist[O_h:O_r].replace('\n', ' '), str(y_pre[i - 1][3] + 1), str(y_pre[i][2]))
                    # print(y_pre[i][0], y_pre[i][1], y_pre[i][2], y_pre[i][3])
                    all.append({'tag': 'O', 'words': self.FindingFrist[O_h:O_r].replace('\n', ' '),
                                'h': y_pre[i - 1][3] + 1, 'r': y_pre[i][2]})
                    all.append({'tag': y_pre[i][0], 'words': y_pre[i][1], 'h': y_pre[i][2], 'r': y_pre[i][3]})
        
        else:
            for i in range(len(y_pre)):
                if i == 0:
                    # print('O', ImagingConclusionFrist[0:y_pre[i][2]].replace('\n', ' '), str(0), str(y_pre[i][2]))
                    # print(y_pre[i][0], y_pre[i][1], y_pre[i][2], y_pre[i][3])
                    all.append({'tag': 'O', 'words': self.ConclusionFrist[0:y_pre[i][2]].replace('\n', ' '), 'h': 0,
                                'r': y_pre[i][2]})
                    all.append({'tag': y_pre[i][0], 'words': y_pre[i][1], 'h': y_pre[i][2], 'r': y_pre[i][3]})
                else:
                    O_h = y_pre[i - 1][3] + 1
                    O_r = y_pre[i][2]
                    # print('O', ImagingConclusionFrist[O_h:O_r].replace('\n', ' '), str(y_pre[i - 1][3] + 1), str(y_pre[i][2]))
                    # print(y_pre[i][0], y_pre[i][1], y_pre[i][2], y_pre[i][3])
                    all.append({'tag': 'O', 'words': self.ConclusionFrist[O_h:O_r].replace('\n', ' '),
                                'h': y_pre[i - 1][3] + 1, 'r': y_pre[i][2]})
                    all.append({'tag': y_pre[i][0], 'words': y_pre[i][1], 'h': y_pre[i][2], 'r': y_pre[i][3]})
        
        return all
    
    def max_size(self, type):
        haveSIZE = False
        for i in self._get_entity_with_O(self._y_pre, False):
            if i['tag'] == 'SIZE':
                haveSIZE = True
        
        all = []
        if not haveSIZE:
            all = self._get_entity_with_O(self._y_pre_o, True)
        else:
            all = self._get_entity_with_O(self._y_pre, False)
        
        # for i in all:
        #     print(i)
        
        max = 0
        max_i = 0
        numbers = []
        types = []
        for i in range(0, len(all)):
            
            if type in all[i]['words']:
                types.append(all[i]['words'])
            if all[i]['tag'] == 'SIZE' and len(types) != 0:
                numbers.append(tools.exactNumber(all[i]['words']))
                types = []
        
        if len(numbers) == 0:
            return ""
        
        for arr_i in range(0, len(numbers)):
            for num in numbers[arr_i]:
                if (re.match("^\d+?\.\d+?$", str(num)) or num.isdigit()) and (
                        re.match("^\d+?\.\d+?$", str(max)) or num.isdigit()):
                    if float(num) > float(max):
                        max = num
                        max_i = arr_i
        
        s = ''
        for num in numbers[max_i]:
            s += str(num) + '*'
        return s.strip("*").strip("cm")
    
    def get_DOI(self):
        haveDOI = False
        for i in self._get_entity_with_O(self._y_pre_o, True):
            if i['tag'] == 'DOI':
                haveDOI = True
        
        all = []
        if not haveDOI:
            all = self._get_entity_with_O(self._y_pre, False)
        else:
            all = self._get_entity_with_O(self._y_pre_o, True)
        DOI_txt = ''
        # all = self._get_entity_with_O(self._y_pre, False)
        # for i in all:
        #     print(i)
        for i in all:
            if i['tag'] == 'DOI':
                DOI_txt += i['words'] + '\n'
        
        return DOI_txt
    
    def get_pT(self):
        pT_txt = ''
        haveDOI = False
        for i in self._get_entity_with_O(self._y_pre_o, True):
            if i['tag'] == 'DOI':
                haveDOI = True
        
        all = []
        if not haveDOI:
            all = self._get_entity_with_O(self._y_pre, False)
        else:
            all = self._get_entity_with_O(self._y_pre_o, True)
        for i in all:
            if i['tag'] == 'DOI':
                pT_txt += tools.pT(i['words']) + '\n'
        return pT_txt
    
    def get_differentiation(self):
        differentiation_txt = ''
        differentiations = []
        all = self._get_entity_with_O(self._y_pre, False)
        # print('self._y_pre:')
        for i in all:
            # print(i)
            if i['tag'] == 'LEVEL':
                _, ans = tools.differentiation(i['words'])
                differentiations.append(ans)
                # differentiation_txt += ans + '\n'
        all = self._get_entity_with_O(self._y_pre_o, True)
        # print('self._y_pre_o:')
        for i in all:
            # print(i)
            if i['tag'] == 'LEVEL':
                _, ans = tools.differentiation(i['words'])
                differentiations.append(ans.strip())
        if ('中-低分化' in (self.ConclusionFrist + self.ConclusionCuttingLymph)) or (
                '中-低分化' in (self.FindingFrist + self.FindingCuttingLymph)):
            differentiations.append("Ⅱ级中分化")
            differentiations.append("Ⅲ级低分化")
        differentiations = set(differentiations)
        for i in differentiations:
            differentiation_txt += i + '\n'
        return differentiation_txt
    
    def get_invasion(self, type):
        all = self._get_entity_with_O(self._y_pre, False)
        for i in all:
            if i['tag'] == 'INVASION':
                if type in i['words']:
                    return '是'
        return '否'
    
    def getENE(self):
        all = self._get_entity_with_O(self._y_pre, False)
        for i in all:
            if i['tag'] == 'ENE':
                return '有'
        return '无'
    
    def getDegree(self, dgr):
        if '-' in dgr:
            dgr_list = dgr.split('-')
            for i in range(len(dgr_list)):
                if "度" not in dgr_list[i]:
                    dgr_list[i] += "度"
            rt_dgr = ""
            for i in dgr_list:
                rt_dgr += i
                rt_dgr += '\n'
            rt_dgr.strip('\n')
            return rt_dgr
        else:
            return dgr
    
    def getANATOMY(self):
        all = self._get_entity_with_O(self._y_pre, False)
        have_anatomy = False
        for i in all:
            if i['tag'] == 'ANATOMY':
                have_anatomy = True
        if not have_anatomy:
            all = self._get_entity_with_O(self._y_pre_o, True)
        count_i = 0
        count_o = 0
        anatomy_list_init = []
        for i in all:
            if i['tag'] == 'ANATOMY':
                if ('I' in i['words'] or 'V' in i['words'] or i['words'] == '左' or i['words'] == '右') and (
                        'DOI' not in i['words'] and 'b' not in i['words'] and 'a' not in i['words'] and 'A' not in i[
                    'words'] and 'B' not in i['words']):
                    count_i += 1
                    anatomy_list_init.append(i['words'])
                    # if i['words'] == '右' or i['words'] == '左':
                    #     rt_txt += i['words']
                    # else:
                    #     rt_txt += i['words'] + '、'
                else:
                    count_o += 1
        
        # print(anatomy_list_init)
        anatomy_list_rt = []
        l_or_r = ''
        for i in range(len(anatomy_list_init)):
            if anatomy_list_init[i] == '左' or anatomy_list_init[i] == '右':
                l_or_r = anatomy_list_init[i]
            elif ('左' not in anatomy_list_init[i] and '右' not in anatomy_list_init[i]) and (
                    'I' in anatomy_list_init[i] or 'V' in anatomy_list_init[i]):
                if l_or_r != '':
                    anatomy_list_rt.append(l_or_r + anatomy_list_init[i].strip('区').strip('淋巴结') + '区')
                else:
                    count_o += 1
            elif '左' in anatomy_list_init[i] or '右' in anatomy_list_init[i]:
                anatomy_list_rt.append(anatomy_list_init[i].strip('区').strip('淋巴结') + '区')
        
        anatomy_set_rt = set(anatomy_list_rt)
        # print(anatomy_set_rt)
        rt_txt = ''
        for i in anatomy_set_rt:
            rt_txt += (i + '、')
        
        if count_o != 0:
            if count_i == 0:
                rt_txt = (rt_txt.strip('、') + '其他')
            else:
                rt_txt = (rt_txt.strip('、') + '、其他')
        return rt_txt.strip('、')
    
    def getANATOMY_o(self):
        all = self._get_entity_with_O(self._y_pre, False)
        have_anatomy = False
        for i in all:
            if i['tag'] == 'ANATOMY':
                have_anatomy = True
        if not have_anatomy:
            all = self._get_entity_with_O(self._y_pre_o, True)
        rt_txt = ''
        anatomy_o_list = []
        anatomy_list = []
        for i in all:
            if i['tag'] == 'ANATOMY':
                if ('I' in i['words'] or 'V' in i['words'] or i['words'] == '左' or i['words'] == '右') and (
                        'DOI' not in i['words'] and 'b' not in i['words'] and 'a' not in i['words'] and 'A' not in i[
                    'words'] and 'B' not in i['words']):
                    anatomy_list.append(i['words'])
                    continue
                else:
                    anatomy_o_list.append(i['words'])
        
        l_or_r = ''
        for i in range(len(anatomy_list)):
            if anatomy_list[i] == '左' or anatomy_list[i] == '右':
                l_or_r = anatomy_list[i]
            elif ('左' not in anatomy_list[i] and '右' not in anatomy_list[i]) and (
                    'I' in anatomy_list[i] or 'V' in anatomy_list[i]):
                if l_or_r == '':
                    anatomy_o_list.append(anatomy_list[i])
            elif '左' in anatomy_list[i] or '右' in anatomy_list[i]:
                continue
        
        # print(anatomy_o_list)
        if len(anatomy_o_list) == 0:
            return '无'
        anatomy_o_list = set(anatomy_o_list)
        for i in anatomy_o_list:
            if ('I' in i or 'V' in i) and ('区' not in i):
                rt_txt += i + '区、'
            else:
                rt_txt += i + '、'
        return rt_txt.strip('、')
    
    def get_histological_type(self):
        all = self._get_entity_with_O(self._y_pre, False)
        # print(all)
        count_s = 0
        count_o = 0
        rt_txt = ''
        for i in all:
            if i['tag'] == 'SQUAMOUS':
                count_s += 1
            if i['tag'] == 'OTHER':
                if ('恶性' in i['words'] or '癌' in i['words'] or '肉瘤' in i['words'] or '异常增生' in i[
                    'words']) and ('鳞状细胞' not in i['words']):
                    count_o += 1
        
        all = self._get_entity_with_O(self._y_pre_o, True)
        # print(all)
        for i in all:
            if i['tag'] == 'SQUAMOUS':
                count_s += 1
            if i['tag'] == 'OTHER':
                if ('恶性' in i['words'] or '癌' in i['words'] or '肉瘤' in i['words'] or '异常增生' in i[
                    'words']) and ('鳞状细胞' not in i['words']):
                    # print(i['words'])
                    count_o += 1
        
        if '鳞状细胞癌' in self._Conclusion or '鳞状细胞癌' in self._Finding:
            count_s += 1
        
        if count_s > 0:
            rt_txt += '鳞状细胞癌\n'
        if count_o > 0:
            rt_txt += '其他'
        if count_o == 0 and count_s == 0:
            rt_txt = '无'
        return rt_txt.strip('、')
    
    def get_other_type(self):
        all = self._get_entity_with_O(self._y_pre, False)
        # for i in all:
        #     print(i)
        rt_txt = ''
        count = 0
        entity = []
        for i in all:
            if i['tag'] == 'OTHER':
                count += 1
                if ('恶性' in i['words'] or '癌' in i['words'] or '肉瘤' in i['words'] or '异常增生' in i[
                    'words']) and ('鳞状细胞' not in i['words']):
                    entity.append(i['words'])
        
        all = self._get_entity_with_O(self._y_pre_o, True)
        for i in all:
            if i['tag'] == 'OTHER':
                count += 1
                if ('恶性' in i['words'] or '癌' in i['words'] or '肉瘤' in i['words'] or '异常增生' in i[
                    'words']) and ('鳞状细胞' not in i['words']):
                    entity.append(i['words'])
        
        entity = set(entity)
        for i in entity:
            rt_txt += i + '\n'
        return '无' if count == 0 else rt_txt
    
    def get_number(self):
        # all = get_entity_with_O(y_pre)
        count = 0
        # for i in self._y_pre:
        #     print(i)
        for i in range(1, len(self._y_pre)):
            if self._y_pre[i][0] == 'NUMBER' and self._y_pre[i - 1][0] == 'ANATOMY':
                # print(y_pre[i][1])
                if '各' in self._y_pre[i][1]:
                    # print(self._y_pre[i][1])
                    count_a = 0
                    for j in range(1, len(self._y_pre)):
                        if self._y_pre[j][0] == 'ANATOMY':
                            count_a += 1
                    # print(self._y_pre[i][1].replace(' ', '').strip('').strip('只').strip('块').strip('组织').strip(
                    #     '枚').strip('各'))
                    count = float(self._y_pre[i][1].replace(' ', '').strip('').strip('只').strip('块').strip('组织').strip(
                        '枚').strip('各')) * count_a
                    return count
                n = self._y_pre[i][1].replace(' ', '').strip('').strip('只').strip('块').strip('组织').strip('枚').strip('各')
                if '/' in n:
                    count += float(n.split('/')[1]) if (len(tools.exactNumber(
                        str(n.split('/')[1]))) != 0) and n.split('/')[1] != '' and ((re.match(
                        "^\d+?\.\d+?$", str(n.split('/')[1]))) or str(n.split('/')[1]).isdigit()) \
                        else float(0)
                else:
                    count += float(n) if (len(tools.exactNumber(str(n)))) and (
                            re.match("^\d+?\.\d+?$", str(n)) or str(n).isdigit()) != 0 else float(0)
        return count
    
    def get_p_number(self):
        count = 0
        num_list = []
        for item in self._y_pre_lymph:
            if item[0] == "NUMBER":
                num_list.append(item)
            if item[0] == "PN":
                if item[1] == '阳性(+)' or item[1] == '阳性(+)' or item[1] == '阳性' or item[1] == '(+)' or item[
                    1] == '(+)' or item[1] == '+':
                    # print(num_list)
                    if len(num_list) == 0:
                        pass
                    else:
                        # self.print_y_pred()
                        for p_item in num_list:
                            n_str = p_item[1].replace(' ', '').strip('').strip('只').strip('块').strip('组织').strip(
                                '枚').strip('各')
                            # print(n_str)
                            if '/' in n_str:
                                # print(n_str.split('/')[0])
                                # if len(tools.exactNumber(str(n_str.split('/')[0]))) != 0:
                                #     print("*")
                                # if n_str.split('/')[0] != '':
                                #     print("**")
                                # if (re.match("^\d+?\.\d+?$", str(n_str.split('/')[0]))) or str(n_str.split('/')[0]).isdigit():
                                #     print("***")
                                
                                count += float(n_str.split('/')[0]) if (len(tools.exactNumber(
                                    str(n_str.split('/')[0]))) != 0) and n_str.split('/')[0] != '' and ((re.match(
                                    "^\d+?\.\d+?$", str(n_str.split('/')[0]))) or str(n_str.split('/')[0]).isdigit()) \
                                    else float(0)
                            else:
                                count += float(n_str) if (len(tools.exactNumber(str(n_str))) != 0) and (
                                        (re.match("^\d+?\.\d+?$", str(n_str))) or str(n_str).isdigit()) else float(0)
                elif item[1] == '阴性(-)' or item[1] == '阴性(-)' or item[1] == '阴性' or item[1] == '(-)' or item[
                    1] == '(-)' or item[1] == '-':
                    num_list = []
        return count
    
    def get_p_max(self):
        p_list = []
        p_list_tmp = []
        size_list = []
        size_list_tmp = []
        # print('----------')
        for item in self._y_pre_lymph:
            if item[0] == "ANATOMY":
                p_list_tmp.append(item)
            if item[0] == "SIZE":
                size_list_tmp.append(item)
            if item[0] == "NUMBER" and '/' in item[1]:
                if len(p_list_tmp) == 0:
                    pass
                else:
                    for p_item in p_list_tmp:
                        p_list.append(p_item)
                    for size_item in size_list_tmp:
                        size_list.append(size_item[1])
                p_list_tmp = []
                size_list_tmp = []
            if item[0] == "PN":
                if item[1] == '阳性(+)' or item[1] == '阳性(+)' or item[1] == '阳性' or item[1] == '(+)' or item[
                    1] == '(+)' or item[1] == '+':
                    if len(p_list_tmp) == 0:
                        pass
                    else:
                        for p_item in p_list_tmp:
                            p_list.append(p_item)
                        for size_item in size_list_tmp:
                            size_list.append(size_item[1])
                    p_list_tmp = []
                    size_list_tmp = []
                else:
                    p_list_tmp = []
                    size_list_tmp = []
        
        # print(p_list)
        # print(size_list)
        
        if len(p_list) != 0:
            contains_single_left = False
            contains_single_right = False
            for i in p_list:
                if i[1] == '左':
                    contains_single_left = True
                if i[1] == '右':
                    contains_single_right = True
            if contains_single_left or contains_single_right == True:
                p_list = self._handle_single(p_list)
            # for i in p_list:
            #     print(i)
            # print('-------------')
            # self.print_y_pred_o()
            p_anatomy = ''
            for i in range(len(self._y_pre_o)):
                if self._y_pre_o[i][0] == 'ANATOMY':
                    p_anatomy = self._y_pre_o[i][1].strip().strip('区')
                if self._y_pre_o[i][0] == 'SIZE':
                    # print(y_pre_o[i][1])
                    if p_anatomy != '':
                        for j in range(0, len(p_list)):
                            # print(p_list[j][1].strip().strip('区'))
                            if p_list[j][1].strip().strip('区')[0] == '左' or p_list[j][1].strip().strip('区')[0] == '右':
                                if p_anatomy[0] != p_list[j][1].strip().strip('区')[0]:
                                    p_anatomy = p_list[j][1].strip().strip('区')[0] + p_anatomy
                                    # print(p_anatomy)
                            # print(p_list[j][1].strip().strip('区'))
                            # print(p_anatomy)
                            if p_list[j][1].strip().strip('区') == p_anatomy:
                                size_list.append(self._y_pre_o[i][1])
                        p_anatomy = ''
            all_size = []
            # print(size_list)
            for i in size_list:
                for j in tools.exactNumber(i):
                    all_size.append(j)
            for i in range(len(all_size)):
                if re.match("^\d+?\.\d+?$", all_size[i]) or all_size[i].isdigit():
                    all_size[i] = float(all_size[i])
            # print(all_size)
            if len(all_size) != 0:
                return max(all_size)
        return 0
        
        # print(len(size_list))
    
    def _handle_single(self, p_list):
        rt_list = []
        lr = ''
        for i in p_list:
            if i[1] == '左' or i[1] == '右':
                lr = i[1]
            else:
                rt_list += [[i[0], lr + i[1], i[2], i[3]]]
        return rt_list
    
    def get_pN(self):
        # if type(self.get_p_max())== int or type(self.get_p_max())== float:
        # print(self.get_p_max())
        return tools.pN(self.get_p_number(), float(self.get_p_max()), self.getENE())
    
    def findSJ(self):
        if '送检淋巴结' in self._Conclusion:
            return '是'
        else:
            return '否'
    
    def get_Info(self):
        print("术后病理切缘:")
        print(str(self.CuttingEdgePathology).strip())
        print("其他术后病理切缘情况:")
        print(str(self.CuttingEdgePathologyOther).strip())
        print("黏膜上皮异常增生程度:")
        print(str(self.Degree).strip())
        print("分子结果:")
        print(str(self.MolecularResultsContent).strip())
        print("免疫组化:")
        print(str(self.Immunohistochemistryisornot).strip())
        print("免疫组化结果:")
        print(str(self.ImmunohistochemistryContent).strip())
        print("送检组织大小cm:")
        print(str(self.max_size("组织")).strip())
        print("肿块大小:")
        print(str(self.max_size("肿块")).strip())
        print("浸润深度(DOI)mm:")
        print(str(self.get_DOI()).strip())
        print("pT:")
        print(str(self.get_pT()).strip())
        print("分化程度")
        print(str(self.get_differentiation()).strip())
        print("神经侵犯:")
        print(str(self.get_invasion('神经')).strip())
        print("血管侵犯:")
        print(str(self.get_invasion('血管')).strip())
        print("淋巴结包膜外ENE(+):")
        print(str(self.getENE()).strip())
        print("送检淋巴结部位:")
        print(str(self.getANATOMY().strip('、')).strip())
        print("其他送检淋巴结部位:")
        print(str(self.getANATOMY_o().strip('、')).strip())
        print("组织学类型:")
        print(str(self.get_histological_type()).strip())
        print("其他组织学类型:")
        print(str(self.get_other_type()).strip())
        if self.findSJ() == '是':
            print('送检淋巴结数目:')
            print(str(self.get_number()).strip())
            print("阳性淋巴结数量:")
            print(str(self.get_p_number()).strip())
            print("阳性淋巴结最大直径cm:")
            print(str(self.get_p_max()).strip())
            print("pN:")
            print(str(self.get_pN()).strip())
    
    def print_original_data(self):
        print(self._Finding)
        print(self._Conclusion)
    
    def print_y_pred(self):
        for i in self._y_pre:
            print(i)
    
    def print_y_pred_o(self):
        for i in self._y_pre_o:
            print(i)
    
    def print_list_item(self, l):
        for i in l:
            print(i)
    
    def get_json(self):
        if self.verbose:
            self.print_y_pred()
            print("-----------------")
            self.print_y_pred_o()
            print("-----------------")
            self.get_Info()
        return {
            "送检组织大小cm": str(self.max_size("组织")).strip(),
            "肿块大小": str(self.max_size("肿块")).strip(),
            "组织学类型": str(self.get_histological_type()).strip(),
            "其他组织学类型": str(self.get_other_type()).strip(),
            "分化程度": str(self.get_differentiation()).strip(),
            "浸润深度(DOI)mm": str(self.get_DOI()).strip(),
            "pT": str(self.get_pT()).strip(),
            "神经侵犯": str(self.get_invasion('神经')).strip(),
            "血管侵犯": str(self.get_invasion('血管')).strip(),
            "术后病理切缘": str(self.CuttingEdgePathology).strip(),
            "其他术后病理切缘情况": str(self.CuttingEdgePathologyOther).strip(),
            "黏膜上皮异常增生程度": str(self.Degree).strip(),
            "免疫组化": str(self.Immunohistochemistryisornot).strip(),
            "免疫组化结果": str(self.ImmunohistochemistryContent).strip(),
            "分子结果": str(self.MolecularResultsContent).strip(),
            "是否送检淋巴结": str(self.findSJ()).strip(),
            "送检淋巴结部位": str(self.getANATOMY()).strip() if str(self.findSJ()).strip() == '是' else '',
            "其他送检淋巴结部位": str(self.getANATOMY_o().strip('、')).strip() if str(self.findSJ()).strip() == '是' else '',
            "送检淋巴结数目": str(self.get_number()).strip() if str(self.findSJ()).strip() == '是' else '',
            "阳性淋巴结数目": str(self.get_p_number()).strip() if str(self.findSJ()).strip() == '是' else '',
            "阳性淋巴结最大直径cm": str(self.get_p_max()).strip() if str(self.findSJ()).strip() == '是' else '',
            "淋巴结包膜外ENE(+)": str(self.getENE()).strip() if str(self.findSJ()).strip() == '是' else '',
            "pN": str(self.get_pN()).strip() if str(self.findSJ()).strip() == '是' else '',
        }


##
if __name__ == '__main__':
    Finding = """
" 左颈大块:6*5*4cm,一侧见一腺体3*3*2cm,灰黄分叶,余为脂肪血管。
左I区: 3只直径0.2-1.2cm。
左II区: 3只直径0.5-1.2cm。
左III区: 3只直径0.5-1cm。
左IV区: 3只直径0.5-0.8cm。
右I区:3只直径1-2cm。
右II区: 3只直径1cm。
右III区: 3只直径0.5-0.8cm。
右IV区: 3只直径0.5-0.6cm。
右颈淋巴:7*7*6cm,內见一腺体3*3*2cm,灰黄分叶,余为脂肪血管。"
"""
    Conclusion = """
"“左颌下腺”慢性涎腺炎
“右颌下腺”慢性涎腺炎
送检淋巴结:“左”“I区”1/3只、“II区”1/3只、“III区”1/3只(肿瘤位于软组织内)及“右”“I区”2/3只(其中1只肿瘤侵犯至包膜外)、“II区”2/3只(肿瘤侵犯至包膜外)有肿瘤转移(+),余及“左IV区”3只、“右”“III区”3只、“IV区”3只均阴性(-)"
"""
    
    oral = Oral(Finding, Conclusion)
    oral.print_y_pred()
    print("-----------------")
    oral.print_y_pred_o()
    print("-----------------")
    oral.get_Info()
    print(oral.get_json())