% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nn.R \name{nn} \alias{nn} \title{Neural Networks using nnet} \usage{ nn( dataset, rvar, evar, type = "classification", lev = "", size = 1, decay = 0.5, wts = "None", seed = NA, check = "standardize", form, data_filter = "", arr = "", rows = NULL, envir = parent.frame() ) } \arguments{ \item{dataset}{Dataset} \item{rvar}{The response variable in the model} \item{evar}{Explanatory variables in the model} \item{type}{Model type (i.e., "classification" or "regression")} \item{lev}{The level in the response variable defined as _success_} \item{size}{Number of units (nodes) in the hidden layer} \item{decay}{Parameter decay} \item{wts}{Weights to use in estimation} \item{seed}{Random seed to use as the starting point} \item{check}{Optional estimation parameters ("standardize" is the default)} \item{form}{Optional formula to use instead of rvar and evar} \item{data_filter}{Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")} \item{arr}{Expression to arrange (sort) the data on (e.g., "color, desc(price)")} \item{rows}{Rows to select from the specified dataset} \item{envir}{Environment to extract data from} } \value{ A list with all variables defined in nn as an object of class nn } \description{ Neural Networks using nnet } \details{ See \url{https://radiant-rstats.github.io/docs/model/nn.html} for an example in Radiant } \examples{ nn(titanic, "survived", c("pclass", "sex"), lev = "Yes") \%>\% summary() nn(titanic, "survived", c("pclass", "sex")) \%>\% str() nn(diamonds, "price", c("carat", "clarity"), type = "regression") \%>\% summary() } \seealso{ \code{\link{summary.nn}} to summarize results \code{\link{plot.nn}} to plot results \code{\link{predict.nn}} for prediction }