% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gbt.R \name{gbt} \alias{gbt} \title{Gradient Boosted Trees using XGBoost} \usage{ gbt( dataset, rvar, evar, type = "classification", lev = "", max_depth = 6, learning_rate = 0.3, min_split_loss = 0, min_child_weight = 1, subsample = 1, nrounds = 100, early_stopping_rounds = 10, nthread = 12, wts = "None", seed = NA, data_filter = "", arr = "", rows = NULL, envir = parent.frame(), ... ) } \arguments{ \item{dataset}{Dataset} \item{rvar}{The response variable in the model} \item{evar}{Explanatory variables in the model} \item{type}{Model type (i.e., "classification" or "regression")} \item{lev}{Level to use as the first column in prediction output} \item{max_depth}{Maximum 'depth' of tree} \item{learning_rate}{Learning rate (eta)} \item{min_split_loss}{Minimal improvement (gamma)} \item{min_child_weight}{Minimum number of instances allowed in each node} \item{subsample}{Subsample ratio of the training instances (0-1)} \item{nrounds}{Number of trees to create} \item{early_stopping_rounds}{Early stopping rule} \item{nthread}{Number of parallel threads to use. Defaults to 12 if available} \item{wts}{Weights to use in estimation} \item{seed}{Random seed to use as the starting point} \item{data_filter}{Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")} \item{arr}{Expression to arrange (sort) the data on (e.g., "color, desc(price)")} \item{rows}{Rows to select from the specified dataset} \item{envir}{Environment to extract data from} \item{...}{Further arguments to pass to xgboost} } \value{ A list with all variables defined in gbt as an object of class gbt } \description{ Gradient Boosted Trees using XGBoost } \details{ See \url{https://radiant-rstats.github.io/docs/model/gbt.html} for an example in Radiant } \examples{ \dontrun{ gbt(titanic, "survived", c("pclass", "sex"), lev = "Yes") \%>\% summary() gbt(titanic, "survived", c("pclass", "sex")) \%>\% str() } gbt( titanic, "survived", c("pclass", "sex"), lev = "Yes", early_stopping_rounds = 0, nthread = 1 ) \%>\% summary() gbt( titanic, "survived", c("pclass", "sex"), early_stopping_rounds = 0, nthread = 1 ) \%>\% str() gbt( titanic, "survived", c("pclass", "sex"), eval_metric = paste0("error@", 0.5 / 6), nthread = 1 ) \%>\% str() gbt( diamonds, "price", c("carat", "clarity"), type = "regression", nthread = 1 ) \%>\% summary() } \seealso{ \code{\link{summary.gbt}} to summarize results \code{\link{plot.gbt}} to plot results \code{\link{predict.gbt}} for prediction }