nn_plots <- c( "none", "net", "vip", "pred_plot", "pdp", "olden", "garson", "dashboard" ) names(nn_plots) <- c( i18n$t("None"), i18n$t("Network"), i18n$t("Permutation Importance"), i18n$t("Prediction plots"), i18n$t("Partial Dependence"), i18n$t("Olden"), i18n$t("Garson"), i18n$t("Dashboard") ) ## list of function arguments nn_args <- as.list(formals(nn)) ## list of function inputs selected by user nn_inputs <- reactive({ ## loop needed because reactive values don't allow single bracket indexing nn_args$data_filter <- if (input$show_filter) input$data_filter else "" nn_args$arr <- if (input$show_filter) input$data_arrange else "" nn_args$rows <- if (input$show_filter) input$data_rows else "" nn_args$dataset <- input$dataset for (i in r_drop(names(nn_args))) { nn_args[[i]] <- input[[paste0("nn_", i)]] } nn_args }) nn_pred_args <- as.list(if (exists("predict.nn")) { formals(predict.nn) } else { formals(radiant.model:::predict.nn) }) # list of function inputs selected by user nn_pred_inputs <- reactive({ # loop needed because reactive values don't allow single bracket indexing for (i in names(nn_pred_args)) { nn_pred_args[[i]] <- input[[paste0("nn_", i)]] } nn_pred_args$pred_cmd <- nn_pred_args$pred_data <- "" if (input$nn_predict == "cmd") { nn_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$nn_pred_cmd) %>% gsub(";\\s+", ";", .) %>% gsub("\"", "\'", .) } else if (input$nn_predict == "data") { nn_pred_args$pred_data <- input$nn_pred_data } else if (input$nn_predict == "datacmd") { nn_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$nn_pred_cmd) %>% gsub(";\\s+", ";", .) %>% gsub("\"", "\'", .) nn_pred_args$pred_data <- input$nn_pred_data } nn_pred_args }) nn_plot_args <- as.list(if (exists("plot.nn")) { formals(plot.nn) } else { formals(radiant.model:::plot.nn) }) ## list of function inputs selected by user nn_plot_inputs <- reactive({ ## loop needed because reactive values don't allow single bracket indexing for (i in names(nn_plot_args)) { nn_plot_args[[i]] <- input[[paste0("nn_", i)]] } nn_plot_args }) nn_pred_plot_args <- as.list(if (exists("plot.model.predict")) { formals(plot.model.predict) } else { formals(radiant.model:::plot.model.predict) }) # list of function inputs selected by user nn_pred_plot_inputs <- reactive({ # loop needed because reactive values don't allow single bracket indexing for (i in names(nn_pred_plot_args)) { nn_pred_plot_args[[i]] <- input[[paste0("nn_", i)]] } nn_pred_plot_args }) output$ui_nn_rvar <- renderUI({ req(input$nn_type) withProgress(message = i18n$t("Acquiring variable information"), value = 1, { if (input$nn_type == "classification") { vars <- two_level_vars() } else { isNum <- .get_class() %in% c("integer", "numeric", "ts") vars <- varnames()[isNum] } }) init <- if (input$nn_type == "classification") { if (is.empty(input$logit_rvar)) isolate(input$nn_rvar) else input$logit_rvar } else { if (is.empty(input$reg_rvar)) isolate(input$nn_rvar) else input$reg_rvar } selectInput( inputId = "nn_rvar", label = i18n$t("Response variable:"), choices = vars, selected = state_single("nn_rvar", vars, init), multiple = FALSE ) }) output$ui_nn_lev <- renderUI({ req(input$nn_type == "classification") req(available(input$nn_rvar)) levs <- .get_data()[[input$nn_rvar]] %>% as_factor() %>% levels() init <- if (is.empty(input$logit_lev)) isolate(input$nn_lev) else input$logit_lev selectInput( inputId = "nn_lev", label = i18n$t("Choose level:"), choices = levs, selected = state_init("nn_lev", init) ) }) output$ui_nn_evar <- renderUI({ if (not_available(input$nn_rvar)) { return() } vars <- varnames() if (length(vars) > 0) { vars <- vars[-which(vars == input$nn_rvar)] } init <- if (input$nn_type == "classification") { # input$logit_evar if (is.empty(input$logit_evar)) isolate(input$nn_evar) else input$logit_evar } else { # input$reg_evar if (is.empty(input$reg_evar)) isolate(input$nn_evar) else input$reg_evar } selectInput( inputId = "nn_evar", label = i18n$t("Explanatory variables:"), choices = vars, selected = state_multiple("nn_evar", vars, init), multiple = TRUE, size = min(10, length(vars)), selectize = FALSE ) }) # function calls generate UI elements output_incl("nn") output_incl_int("nn") output$ui_nn_wts <- renderUI({ isNum <- .get_class() %in% c("integer", "numeric", "ts") vars <- varnames()[isNum] if (length(vars) > 0 && any(vars %in% input$nn_evar)) { vars <- base::setdiff(vars, input$nn_evar) names(vars) <- varnames() %>% { .[match(vars, .)] } %>% names() } vars <- c("None", vars) selectInput( inputId = "nn_wts", label = i18n$t("Weights:"), choices = vars, selected = state_single("nn_wts", vars), multiple = FALSE ) }) output$ui_nn_store_pred_name <- renderUI({ init <- state_init("nn_store_pred_name", "pred_nn") %>% sub("\\d{1,}$", "", .) %>% paste0(., ifelse(is.empty(input$nn_size), "", input$nn_size)) textInput( "nn_store_pred_name", i18n$t("Store predictions:"), init ) }) output$ui_nn_store_res_name <- renderUI({ req(input$dataset) textInput("nn_store_res_name", i18n$t("Store residuals:"), "", placeholder = i18n$t("Provide variable name")) }) ## reset prediction and plot settings when the dataset changes observeEvent(input$dataset, { updateSelectInput(session = session, inputId = "nn_predict", selected = "none") updateSelectInput(session = session, inputId = "nn_plots", selected = "none") }) ## reset prediction settings when the model type changes observeEvent(input$nn_type, { updateSelectInput(session = session, inputId = "nn_predict", selected = "none") updateSelectInput(session = session, inputId = "nn_plots", selected = "none") }) output$ui_nn_predict_plot <- renderUI({ predict_plot_controls("nn") }) output$ui_nn_plots <- renderUI({ req(input$nn_type) if (input$nn_type != "regression") { nn_plots <- head(nn_plots, -1) } selectInput( "nn_plots", i18n$t("Plots:"), choices = nn_plots, selected = state_single("nn_plots", nn_plots) ) }) output$ui_nn_nrobs <- renderUI({ nrobs <- nrow(.get_data()) choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>% .[. < nrobs] selectInput( "nn_nrobs", i18n$t("Number of data points plotted:"), choices = choices, selected = state_single("nn_nrobs", choices, 1000) ) }) ## add a spinning refresh icon if the model needs to be (re)estimated run_refresh(nn_args, "nn", tabs = "tabs_nn", label = i18n$t("Estimate model"), relabel = i18n$t("Re-estimate model")) output$ui_nn <- renderUI({ req(input$dataset) tagList( conditionalPanel( condition = "input.tabs_nn == 'Summary'", wellPanel( actionButton("nn_run", i18n$t("Estimate model"), width = "100%", icon = icon("play", verify_fa = FALSE), class = "btn-success") ) ), wellPanel( conditionalPanel( condition = "input.tabs_nn == 'Summary'", radioButtons( "nn_type", label = NULL, choices = c("classification", "regression") %>% { names(.) <- c(i18n$t("Classification"), i18n$t("Regression")); . }, inline = TRUE ), uiOutput("ui_nn_rvar"), uiOutput("ui_nn_lev"), uiOutput("ui_nn_evar"), uiOutput("ui_nn_wts"), tags$table( tags$td(numericInput( "nn_size", label = i18n$t("Size:"), min = 1, max = 20, value = state_init("nn_size", 1), width = "77px" )), tags$td(numericInput( "nn_decay", label = i18n$t("Decay:"), min = 0, max = 1, step = .1, value = state_init("nn_decay", .5), width = "77px" )), tags$td(numericInput( "nn_seed", label = i18n$t("Seed:"), value = state_init("nn_seed", 1234), width = "77px" )), width = "100%" ) ), conditionalPanel( condition = "input.tabs_nn == 'Predict'", selectInput( "nn_predict", label = i18n$t("Prediction input type:"), reg_predict, selected = state_single("nn_predict", reg_predict, "none") ), conditionalPanel( "input.nn_predict == 'data' | input.nn_predict == 'datacmd'", selectizeInput( inputId = "nn_pred_data", label = i18n$t("Prediction data:"), choices = c("None" = "", r_info[["datasetlist"]]), selected = state_single("nn_pred_data", c("None" = "", r_info[["datasetlist"]])), multiple = FALSE ) ), conditionalPanel( "input.nn_predict == 'cmd' | input.nn_predict == 'datacmd'", returnTextAreaInput( "nn_pred_cmd", i18n$t("Prediction command:"), value = state_init("nn_pred_cmd", ""), rows = 3, placeholder = i18n$t("Type a formula to set values for model variables (e.g., carat = 1; cut = 'Ideal') and press return") ) ), conditionalPanel( condition = "input.nn_predict != 'none'", checkboxInput("nn_pred_plot", i18n$t("Plot predictions"), state_init("nn_pred_plot", FALSE)), conditionalPanel( "input.nn_pred_plot == true", uiOutput("ui_nn_predict_plot") ) ), ## only show if full data is used for prediction conditionalPanel( "input.nn_predict == 'data' | input.nn_predict == 'datacmd'", tags$table( tags$td(uiOutput("ui_nn_store_pred_name")), tags$td(actionButton("nn_store_pred", i18n$t("Store"), icon = icon("plus", verify_fa = FALSE)), class = "top") ) ) ), conditionalPanel( condition = "input.tabs_nn == 'Plot'", uiOutput("ui_nn_plots"), conditionalPanel( condition = "input.nn_plots == 'pdp' | input.nn_plots == 'pred_plot'", uiOutput("ui_nn_incl"), uiOutput("ui_nn_incl_int") ), conditionalPanel( condition = "input.nn_plots == 'dashboard'", uiOutput("ui_nn_nrobs") ) ), conditionalPanel( condition = "input.tabs_nn == 'Summary'", tags$table( tags$td(uiOutput("ui_nn_store_res_name")), tags$td(actionButton("nn_store_res", i18n$t("Store"), icon = icon("plus", verify_fa = FALSE)), class = "top") ) ) ), help_and_report( modal_title = i18n$t("Neural Network"), fun_name = "nn", help_file = inclMD(file.path(getOption("radiant.path.model"), "app/tools/help/nn.md")) ) ) }) nn_plot <- reactive({ if (nn_available() != "available") { return() } if (is.empty(input$nn_plots, "none")) { return() } res <- .nn() if (is.character(res)) { return() } plot_width <- 650 if ("dashboard" %in% input$nn_plots) { plot_height <- 750 } else if (input$nn_plots %in% c("pdp", "pred_plot")) { nr_vars <- length(input$nn_incl) + length(input$nn_incl_int) plot_height <- max(250, ceiling(nr_vars / 2) * 250) if (length(input$nn_incl_int) > 0) { plot_width <- plot_width + min(2, length(input$nn_incl_int)) * 90 } } else { mlt <- if ("net" %in% input$nn_plots) 45 else 30 plot_height <- max(500, length(res$model$coefnames) * mlt) } list(plot_width = plot_width, plot_height = plot_height) }) nn_plot_width <- function() { nn_plot() %>% (function(x) if (is.list(x)) x$plot_width else 650) } nn_plot_height <- function() { nn_plot() %>% (function(x) if (is.list(x)) x$plot_height else 500) } nn_pred_plot_height <- function() { if (input$nn_pred_plot) 500 else 1 } ## output is called from the main radiant ui.R output$nn <- renderUI({ register_print_output("summary_nn", ".summary_nn") register_print_output("predict_nn", ".predict_print_nn") register_plot_output( "predict_plot_nn", ".predict_plot_nn", height_fun = "nn_pred_plot_height" ) register_plot_output( "plot_nn", ".plot_nn", height_fun = "nn_plot_height", width_fun = "nn_plot_width" ) ## three separate tabs nn_output_panels <- tabsetPanel( id = "tabs_nn", tabPanel( i18n$t("Summary"), value = "Summary", verbatimTextOutput("summary_nn") ), tabPanel( i18n$t("Predict"), value = "Predict", conditionalPanel( "input.nn_pred_plot == true", download_link("dlp_nn_pred"), plotOutput("predict_plot_nn", width = "100%", height = "100%") ), download_link("dl_nn_pred"), br(), verbatimTextOutput("predict_nn") ), tabPanel( i18n$t("Plot"), value = "Plot", download_link("dlp_nn"), plotOutput("plot_nn", width = "100%", height = "100%") ) ) stat_tab_panel( menu = i18n$t("Model > Estimate"), tool = i18n$t("Neural Network"), tool_ui = "ui_nn", output_panels = nn_output_panels ) }) nn_available <- reactive({ req(input$nn_type) if (not_available(input$nn_rvar)) { if (input$nn_type == "classification") { i18n$t("This analysis requires a response variable with two levels and one\nor more explanatory variables. If these variables are not available\nplease select another dataset.\n\n") %>% suggest_data("titanic") } else { i18n$t("This analysis requires a response variable of type integer\nor numeric and one or more explanatory variables.\nIf these variables are not available please select another dataset.\n\n") %>% suggest_data("diamonds") } } else if (not_available(input$nn_evar)) { if (input$nn_type == "classification") { i18n$t("Please select one or more explanatory variables.") %>% suggest_data("titanic") } else { i18n$t("Please select one or more explanatory variables.") %>% suggest_data("diamonds") } } else { "available" } }) .nn <- eventReactive(input$nn_run, { nni <- nn_inputs() nni$envir <- r_data withProgress( message = i18n$t("Estimating model"), value = 1, do.call(nn, nni) ) }) .summary_nn <- reactive({ if (not_pressed(input$nn_run)) { return(i18n$t("** Press the Estimate button to estimate the model **")) } if (nn_available() != "available") { return(nn_available()) } summary(.nn()) }) .predict_nn <- reactive({ if (not_pressed(input$nn_run)) { return(i18n$t("** Press the Estimate button to estimate the model **")) } if (nn_available() != "available") { return(nn_available()) } if (is.empty(input$nn_predict, "none")) { return(i18n$t("** Select prediction input **")) } if ((input$nn_predict == "data" || input$nn_predict == "datacmd") && is.empty(input$nn_pred_data)) { return(i18n$t("** Select data for prediction **")) } if (input$nn_predict == "cmd" && is.empty(input$nn_pred_cmd)) { return(i18n$t("** Enter prediction commands **")) } withProgress(message = i18n$t("Generating predictions"), value = 1, { nni <- nn_pred_inputs() nni$object <- .nn() nni$envir <- r_data do.call(predict, nni) }) }) .predict_print_nn <- reactive({ .predict_nn() %>% { if (is.character(.)) cat(., "\n") else print(.) } }) .predict_plot_nn <- reactive({ req( pressed(input$nn_run), input$nn_pred_plot, available(input$nn_xvar), !is.empty(input$nn_predict, "none") ) # if (not_pressed(input$nn_run)) return(invisible()) # if (nn_available() != "available") return(nn_available()) # req(input$nn_pred_plot, available(input$nn_xvar)) # if (is.empty(input$nn_predict, "none")) return(invisible()) # if ((input$nn_predict == "data" || input$nn_predict == "datacmd") && is.empty(input$nn_pred_data)) { # return(invisible()) # } # if (input$nn_predict == "cmd" && is.empty(input$nn_pred_cmd)) { # return(invisible()) # } withProgress(message = i18n$t("Generating prediction plot"), value = 1, { do.call(plot, c(list(x = .predict_nn()), nn_pred_plot_inputs())) }) }) .plot_nn <- reactive({ if (not_pressed(input$nn_run)) { return(i18n$t("** Press the Estimate button to estimate the model **")) } else if (nn_available() != "available") { return(nn_available()) } req(input$nn_size) if (is.empty(input$nn_plots, "none")) { return(i18n$t("Please select a neural network plot from the drop-down menu")) } pinp <- nn_plot_inputs() pinp$shiny <- TRUE pinp$size <- NULL if (input$nn_plots == "dashboard") { req(input$nn_nrobs) } if (input$nn_plots == "net") { .nn() %>% (function(x) if (is.character(x)) invisible() else capture_plot(do.call(plot, c(list(x = x), pinp)))) } else { withProgress(message = i18n$t("Generating plots"), value = 1, { do.call(plot, c(list(x = .nn()), pinp)) }) } }) observeEvent(input$nn_store_res, { req(pressed(input$nn_run)) robj <- .nn() if (!is.list(robj)) { return() } fixed <- fix_names(input$nn_store_res_name) updateTextInput(session, "nn_store_res_name", value = fixed) withProgress( message = i18n$t("Storing residuals"), value = 1, r_data[[input$dataset]] <- store(r_data[[input$dataset]], robj, name = fixed) ) }) observeEvent(input$nn_store_pred, { req(!is.empty(input$nn_pred_data), pressed(input$nn_run)) pred <- .predict_nn() if (is.null(pred)) { return() } fixed <- fix_names(input$nn_store_pred_name) updateTextInput(session, "nn_store_pred_name", value = fixed) withProgress( message = i18n$t("Storing predictions"), value = 1, r_data[[input$nn_pred_data]] <- store( r_data[[input$nn_pred_data]], pred, name = fixed ) ) }) nn_report <- function() { if (is.empty(input$nn_evar)) { return(invisible()) } outputs <- c("summary") inp_out <- list(list(prn = TRUE), "") figs <- FALSE if (!is.empty(input$nn_plots, "none")) { inp <- check_plot_inputs(nn_plot_inputs()) inp$size <- NULL inp_out[[2]] <- clean_args(inp, nn_plot_args[-1]) inp_out[[2]]$custom <- FALSE outputs <- c(outputs, "plot") figs <- TRUE } if (!is.empty(input$nn_store_res_name)) { fixed <- fix_names(input$nn_store_res_name) updateTextInput(session, "nn_store_res_name", value = fixed) xcmd <- paste0(input$dataset, " <- store(", input$dataset, ", result, name = \"", fixed, "\")\n") } else { xcmd <- "" } if (!is.empty(input$nn_predict, "none") && (!is.empty(input$nn_pred_data) || !is.empty(input$nn_pred_cmd))) { pred_args <- clean_args(nn_pred_inputs(), nn_pred_args[-1]) if (!is.empty(pred_args$pred_cmd)) { pred_args$pred_cmd <- strsplit(pred_args$pred_cmd, ";\\s*")[[1]] } else { pred_args$pred_cmd <- NULL } if (!is.empty(pred_args$pred_data)) { pred_args$pred_data <- as.symbol(pred_args$pred_data) } else { pred_args$pred_data <- NULL } inp_out[[2 + figs]] <- pred_args outputs <- c(outputs, "pred <- predict") xcmd <- paste0(xcmd, "print(pred, n = 10)") if (input$nn_predict %in% c("data", "datacmd")) { fixed <- fix_names(input$nn_store_pred_name) updateTextInput(session, "nn_store_pred_name", value = fixed) xcmd <- paste0( xcmd, "\n", input$nn_pred_data, " <- store(", input$nn_pred_data, ", pred, name = \"", fixed, "\")" ) } if (input$nn_pred_plot && !is.empty(input$nn_xvar)) { inp_out[[3 + figs]] <- clean_args(nn_pred_plot_inputs(), nn_pred_plot_args[-1]) inp_out[[3 + figs]]$result <- "pred" outputs <- c(outputs, "plot") figs <- TRUE } } nn_inp <- nn_inputs() if (input$nn_type == "regression") { nn_inp$lev <- NULL } update_report( inp_main = clean_args(nn_inp, nn_args), fun_name = "nn", inp_out = inp_out, outputs = outputs, figs = figs, fig.width = nn_plot_width(), fig.height = nn_plot_height(), xcmd = xcmd ) } dl_nn_pred <- function(path) { if (pressed(input$nn_run)) { write.csv(.predict_nn(), file = path, row.names = FALSE) } else { cat(i18n$t("No output available. Press the Estimate button to generate results"), file = path) } } download_handler( id = "dl_nn_pred", fun = dl_nn_pred, fn = function() paste0(input$dataset, "_nn_pred"), type = "csv", caption = i18n$t("Save predictions") ) download_handler( id = "dlp_nn_pred", fun = download_handler_plot, fn = function() paste0(input$dataset, "_nn_pred"), type = "png", caption = i18n$t("Save neural network prediction plot"), plot = .predict_plot_nn, width = plot_width, height = nn_pred_plot_height ) download_handler( id = "dlp_nn", fun = download_handler_plot, fn = function() paste0(input$dataset, "_nn"), type = "png", caption = i18n$t("Save neural network plot"), plot = .plot_nn, width = nn_plot_width, height = nn_plot_height ) observeEvent(input$nn_report, { r_info[["latest_screenshot"]] <- NULL nn_report() }) observeEvent(input$nn_screenshot, { r_info[["latest_screenshot"]] <- NULL radiant_screenshot_modal("modal_nn_screenshot") }) observeEvent(input$modal_nn_screenshot, { nn_report() removeModal() ## remove shiny modal after save })