import_fs("radiant.model", libs = "nnet", incl = "nnet.formula") ## urls for menu r_url_list <- getOption("radiant.url.list") r_url_list[["Linear regression (OLS)"]] <- list("tabs_regress" = list( "Summary" = "model/regress/", "Predict" = "model/regress/predict/", "Plot" = "model/regress/plot/" )) r_url_list[["Logistic regression (GLM)"]] <- list("tabs_logistic" = list( "Summary" = "model/logistic/", "Predict" = "model/logistic/predict/", "Plot" = "model/logistic/plot/" )) r_url_list[["Multinomial logistic regression (MNL)"]] <- list("tabs_mnl" = list( "Summary" = "model/mnl/", "Predict" = "model/mnl/predict/", "Plot" = "model/mnl/plot/" )) r_url_list[["Naive Bayes"]] <- list("tabs_nb" = list( "Summary" = "model/nb/", "Predict" = "model/nb/predict/", "Plot" = "model/nb/plot/" )) r_url_list[["Neural Network"]] <- list("tabs_nn" = list( "Summary" = "model/nn/", "Predict" = "model/nn/predict/", "Plot" = "model/nn/plot/" )) r_url_list[["Classification and regression trees"]] <- list("tabs_crtree" = list( "Summary" = "model/crtree/", "Predict" = "model/crtree/predict/", "Plot" = "model/crtree/plot/" )) r_url_list[["Random Forest"]] <- list("tabs_rf" = list( "Summary" = "model/rf/", "Predict" = "model/rf/predict/", "Plot" = "model/rf/plot/" )) r_url_list[["Gradient Boosted Trees"]] <- list("tabs_gbt" = list( "Summary" = "model/gbtf/", "Predict" = "model/gbt/predict/", "Plot" = "model/gbt/plot/" )) r_url_list[["Evaluate regression"]] <- list("tabs_evalreg" = list("Summary" = "model/evalreg/")) r_url_list[["Evaluate classification"]] <- list("tabs_evalbin" = list("Evaluate" = "model/evalbin/", "Confusion" = "model/evalbin/confusion/")) r_url_list[["Collaborative Filtering"]] <- list("tabs_crs" = list("Summary" = "model/crs/", "Plot" = "model/crs/plot/")) r_url_list[["Decision analysis"]] <- list("tabs_dtree" = list( "Model" = "model/dtree/", "Plot" = "model/dtree/plot/", "Sensitivity" = "model/dtree/sensitivity" )) r_url_list[["Simulate"]] <- list("tabs_simulate" = list("Simulate" = "model/simulate/", "Repeat" = "model/simulate/repeat/")) options(radiant.url.list = r_url_list) rm(r_url_list) ## model menu options( radiant.model_ui = tagList( navbarMenu( i18n$t("Model"), tags$head( tags$link(rel = "stylesheet", type = "text/css", href = "www_model/style.css"), tags$script(src = "www_model/js/store.js") ), i18n$t("Estimate"), tabPanel(i18n$t("Linear regression (OLS)"), uiOutput("regress")), tabPanel(i18n$t("Logistic regression (GLM)"), uiOutput("logistic")), tabPanel(i18n$t("Cox Proportional Hazards Regression"),uiOutput("coxp")), tabPanel(i18n$t("Multinomial logistic regression (MNL)"), uiOutput("mnl")), tabPanel(i18n$t("Naive Bayes"), uiOutput("nb")), tabPanel(i18n$t("Neural Network"), uiOutput("nn")), tabPanel(i18n$t("Support Vector Machine (SVM)"),uiOutput("svm")), "----", i18n$t("Trees"), tabPanel(i18n$t("Classification and regression trees"), uiOutput("crtree")), tabPanel(i18n$t("Random Forest"), uiOutput("rf")), tabPanel(i18n$t("Gradient Boosted Trees"), uiOutput("gbt")), "----", i18n$t("Evaluate"), tabPanel(i18n$t("Evaluate regression"), uiOutput("evalreg")), tabPanel(i18n$t("Evaluate classification"), uiOutput("evalbin")), "----", i18n$t("Recommend"), tabPanel(i18n$t("Collaborative Filtering"), uiOutput("crs")), "----", i18n$t("Decide"), tabPanel(i18n$t("Decision analysis"), uiOutput("dtree")), tabPanel(i18n$t("Simulate"), uiOutput("simulater")) ) ) )