% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rforest.R \name{cv.rforest} \alias{cv.rforest} \title{Cross-validation for a Random Forest} \usage{ cv.rforest( object, K = 5, repeats = 1, mtry = 1:5, num.trees = NULL, min.node.size = 1, sample.fraction = NA, trace = TRUE, seed = 1234, fun, ... ) } \arguments{ \item{object}{Object of type "rforest" or "ranger"} \item{K}{Number of cross validation passes to use} \item{repeats}{Repeated cross validation} \item{mtry}{Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables} \item{num.trees}{Number of trees to create} \item{min.node.size}{Minimal node size} \item{sample.fraction}{Fraction of observations to sample. Default is 1 for sampling with replacement and 0.632 for sampling without replacement} \item{trace}{Print progress} \item{seed}{Random seed to use as the starting point} \item{fun}{Function to use for model evaluation (i.e., auc for classification and RMSE for regression)} \item{...}{Additional arguments to be passed to 'fun'} } \value{ A data.frame sorted by the mean of the performance metric } \description{ Cross-validation for a Random Forest } \details{ See \url{https://radiant-rstats.github.io/docs/model/rforest.html} for an example in Radiant } \examples{ \dontrun{ result <- rforest(dvd, "buy", c("coupon", "purch", "last")) cv.rforest( result, mtry = 1:3, min.node.size = seq(1, 10, 5), num.trees = c(100, 200), sample.fraction = 0.632 ) result <- rforest(titanic, "survived", c("pclass", "sex"), max.depth = 1) cv.rforest(result, mtry = 1:3, min.node.size = seq(1, 10, 5)) cv.rforest(result, mtry = 1:3, num.trees = c(100, 200), fun = profit, cost = 1, margin = 5) result <- rforest(diamonds, "price", c("carat", "color", "clarity"), type = "regression") cv.rforest(result, mtry = 1:3, min.node.size = 1) cv.rforest(result, mtry = 1:3, min.node.size = 1, fun = Rsq) } } \seealso{ \code{\link{rforest}} to generate an initial model that can be passed to cv.rforest \code{\link{Rsq}} to calculate an R-squared measure for a regression \code{\link{RMSE}} to calculate the Root Mean Squared Error for a regression \code{\link{MAE}} to calculate the Mean Absolute Error for a regression \code{\link{auc}} to calculate the area under the ROC curve for classification \code{\link{profit}} to calculate profits for classification at a cost/margin threshold }