# to avoid 'no visible binding for global variable' NOTE globalVariables(c( ".", "High", "Low", ".cooksd", ".fitted", ".resid", ".std.resid", "FN", "FP", "Feature", "Importance", "Predictor", "ROME", "TN", "TP", "TPR", "Variable", "cum_gains", "cum_prop", "cum_resp", "cum_resp_rate", "index", "index.max", "label", "logit", "n", "nr_obs", "nr_resp", "null.deviance", "obs", "precision", "pred", "predictor.value", "total", "variable", "llfull", "llnull", "rnk", "Prediction", "C_resp", "C_n", "T_resp", "T_n", "bins", "inc_uplift", "incremental_resp", "cum_profit", "incremental_profit", "max_profit" )) #' radiant.model #' #' @name radiant.model #' @import radiant.data shiny ggplot2 #' @importFrom dplyr mutate_at mutate_if mutate_all summarise_at summarise_all arrange arrange_at select select_at filter mutate mutate_ funs group_by group_by_ summarise summarize summarise_ slice bind_cols bind_rows desc first last min_rank data_frame inner_join arrange_at group_by_at ungroup rename across everything pull #' @importFrom rlang .data parse_exprs := #' @importFrom magrittr %>% %<>% %T>% set_colnames set_rownames set_names extract2 #' @importFrom tidyr spread gather #' @importFrom lubridate now #' @importFrom patchwork wrap_plots plot_annotation #' @importFrom DiagrammeR DiagrammeROutput renderDiagrammeR DiagrammeR mermaid #' @importFrom utils head tail relist as.relistable combn capture.output write.table #' @importFrom stats anova as.formula binomial coef confint cor deviance dnorm glm lm na.omit pnorm predict qnorm sd setNames step update weighted.mean wilcox.test rbinom rlnorm rnorm runif rpois terms quantile #' @importFrom stats residuals formula model.matrix pt qt confint.default family median logLik relevel terms.formula #' @importFrom import from NULL #' Catalog sales for men's and women's apparel #' @details Description provided in attr(catalog, "description") #' @docType data #' @keywords datasets #' @name catalog #' @usage data(catalog) #' @format A data frame with 200 rows and 5 variables NULL #' Direct marketing data #' @details Description provided in attr(direct_marketing, "description") #' @docType data #' @keywords datasets #' @name direct_marketing #' @usage data(direct_marketing) #' @format A data frame with 1,000 rows and 12 variables NULL #' Houseprices #' @details Description provided in attr(houseprices, "description") #' @docType data #' @keywords datasets #' @name houseprices #' @usage data(houseprices) #' @format A data frame with 128 home sales and 6 variables NULL #' Ideal data for linear regression #' @details Description provided in attr(ideal, "description") #' @docType data #' @keywords datasets #' @name ideal #' @usage data(ideal) #' @format A data frame with 1,000 rows and 4 variables NULL #' Data on DVD sales #' @details Binary purchase response to coupon value. Description provided in attr(dvd,"description") #' @docType data #' @keywords datasets #' @name dvd #' @usage data(dvd) #' @format A data frame with 20,000 rows and 4 variables NULL #' Data on ketchup choices #' @details Choice behavior for a sample of 300 individuals in a panel of households in Springfield, Missouri (USA). Description provided in attr(ketchup,"description") #' @docType data #' @keywords datasets #' @name ketchup #' @usage data(ketchup) #' @format A data frame with 2,798 rows and 14 variables NULL #' Movie ratings #' @details Use collaborative filtering to create recommendations based on ratings from existing users. Description provided in attr(ratings, "description") #' @docType data #' @keywords datasets #' @name ratings #' @usage data(ratings) #' @format A data frame with 110 rows and 4 variables NULL #' Movie contract decision tree #' @details Use decision analysis to create a decision tree for an actor facing a contract decision #' @docType data #' @keywords datasets #' @name movie_contract #' @usage data(movie_contract) #' @format A nested list for decision and chance nodes, probabilities and payoffs NULL #' Kaggle uplift #' @details Use uplift modeling to quantify the effectiveness of an experimental treatment #' @docType data #' @keywords datasets #' @name kaggle_uplift #' @usage data(kaggle_uplift) #' @format A data frame with 1,000 rows and 22 variables NULL