From 4c0f7562efbf5252045d2d2873dab147c3981c06 Mon Sep 17 00:00:00 2001 From: wuzekai <3025054974@qq.com> Date: Wed, 5 Nov 2025 13:21:37 +0800 Subject: [PATCH] update --- Dockerfile | 2 +- data/Hypertension-risk-model-main.csv | 4241 +++++++++++++++++ data/avengers.csv | 1 - data/insurance.csv | 1339 ++++++ data/superheroes.csv | 1 - data/test.state.rda | Bin 59705 -> 76685 bytes .../inst/translations/translation_zh.csv | 5 + radiant.model/DESCRIPTION | 115 +- radiant.model/NAMESPACE | 2 + radiant.model/R/coxp.R | 2 - radiant.model/R/svm.R | 742 ++- .../inst/app/tools/analysis/svm_ui.R | 502 +- radiant.model/man/cv.svm.Rd | 22 + radiant.model/man/plot.svm.Rd | 21 + radiant.model/man/predict.svm.Rd | 4 +- radiant.model/man/print.svm.predict.Rd | 4 +- radiant.model/man/scale_df.Rd | 6 +- radiant.model/man/summary.svm.Rd | 6 +- radiant.model/man/svm.Rd | 15 +- radiant.model/man/varimp.Rd | 6 +- radiant.model/man/varimp_plot.Rd | 6 +- radiant.quickgen/R/quickgen_ai.R | 2 +- 22 files changed, 6545 insertions(+), 499 deletions(-) create mode 100644 data/Hypertension-risk-model-main.csv delete mode 100644 data/avengers.csv create mode 100644 data/insurance.csv delete mode 100644 data/superheroes.csv create mode 100644 radiant.model/man/cv.svm.Rd create mode 100644 radiant.model/man/plot.svm.Rd diff --git a/Dockerfile b/Dockerfile index bc18aab..e6a6577 100644 --- a/Dockerfile +++ b/Dockerfile @@ -11,6 +11,7 @@ RUN echo 'options(radiant.shinyFiles = FALSE)' >> /usr/local/lib/R/etc/Rprofile. COPY . /srv/shiny-server/ COPY set_path.R /usr/local/lib/R/etc/Rprofile.site.d/00-radiant-path.R RUN echo 'source("/srv/shiny-server/radiant.model/R/coxp.R")' >> /usr/local/lib/R/etc/Rprofile.site +Run echo 'load("/srv/shiny-server/data/test.state.rda")' >> /usr/local/lib/R/etc/Rprofile.site # 安装所有模块 RUN R -e "remotes::install_local('/srv/shiny-server/radiant.data',dependencies=TRUE, type='source', upgrade='never',force=TRUE)" @@ -22,7 +23,6 @@ RUN R -e "remotes::install_local('/srv/shiny-server/radiant.quickgen',dependenci RUN R -e "remotes::install_local('/srv/shiny-server/radiant-master',dependencies=TRUE, type='source', upgrade='never',force=TRUE)" WORKDIR /data -RUN R -e "load('/data/test.state.rda')" CMD ["R", "-e", "radiant::radiant(host='0.0.0.0', port=3838)"] #docker images | grep radiant 查看镜像 diff --git a/data/Hypertension-risk-model-main.csv b/data/Hypertension-risk-model-main.csv new file mode 100644 index 0000000..045c0d4 --- /dev/null +++ b/data/Hypertension-risk-model-main.csv @@ -0,0 +1,4241 @@ +male,age,currentSmoker,cigsPerDay,BPMeds,diabetes,totChol,sysBP,diaBP,BMI,heartRate,glucose,Risk +1,39,0,0,0,0,195,106,70,26.97,80,77,0 +0,46,0,0,0,0,250,121,81,28.73,95,76,0 +1,48,1,20,0,0,245,127.5,80,25.34,75,70,0 +0,61,1,30,0,0,225,150,95,28.58,65,103,1 +0,46,1,23,0,0,285,130,84,23.1,85,85,0 +0,43,0,0,0,0,228,180,110,30.3,77,99,1 +0,63,0,0,0,0,205,138,71,33.11,60,85,0 +0,45,1,20,0,0,313,100,71,21.68,79,78,0 +1,52,0,0,0,0,260,141.5,89,26.36,76,79,1 +1,43,1,30,0,0,225,162,107,23.61,93,88,1 +0,50,0,0,0,0,254,133,76,22.91,75,76,0 +0,43,0,0,0,0,247,131,88,27.64,72,61,0 +1,46,1,15,0,0,294,142,94,26.31,98,64,1 +0,41,0,0,1,0,332,124,88,31.31,65,84,1 +0,39,1,9,0,0,226,114,64,22.35,85,NA,0 +0,38,1,20,0,0,221,140,90,21.35,95,70,1 +1,48,1,10,0,0,232,138,90,22.37,64,72,1 +0,46,1,20,0,0,291,112,78,23.38,80,89,0 +0,38,1,5,0,0,195,122,84.5,23.24,75,78,0 +1,41,0,0,0,0,195,139,88,26.88,85,65,0 +0,42,1,30,0,0,190,108,70.5,21.59,72,85,0 +0,43,0,0,0,0,185,123.5,77.5,29.89,70,NA,0 +0,52,0,0,0,0,234,148,78,34.17,70,113,0 +0,52,1,20,0,0,215,132,82,25.11,71,75,0 +1,44,1,30,0,0,270,137.5,90,21.96,75,83,1 +1,47,1,20,0,0,294,102,68,24.18,62,66,0 +0,60,0,0,0,0,260,110,72.5,26.59,65,NA,0 +1,35,1,20,0,0,225,132,91,26.09,73,83,1 +0,61,0,0,0,0,272,182,121,32.8,85,65,1 +0,60,0,0,0,0,247,130,88,30.36,72,74,0 +1,36,1,35,0,0,295,102,68,28.15,60,63,0 +1,43,1,43,0,0,226,115,85.5,27.57,75,75,0 +0,59,0,0,0,0,209,150,85,20.77,90,88,1 +1,61,1,5,0,0,175,134,82.5,18.59,72,75,0 +1,54,1,20,0,0,214,147,74,24.71,96,87,1 +1,37,0,0,0,0,225,124.5,92.5,38.53,95,83,1 +1,56,0,0,0,0,257,153.5,102,28.09,72,75,0 +1,52,0,0,0,1,178,160,98,40.11,75,225,1 +0,42,1,1,0,0,233,153,101,28.93,60,90,1 +1,36,0,0,0,0,180,111,73,27.78,71,80,0 +0,43,1,10,0,0,243,116.5,80,26.87,68,78,0 +0,41,1,1,0,0,237,122,78,23.28,75,74,0 +0,52,0,0,1,0,NA,148,92,25.09,70,NA,1 +1,54,0,0,0,0,195,132,83.5,26.21,75,100,0 +0,53,0,0,1,1,311,206,92,21.51,76,215,1 +0,49,0,0,0,0,208,96,63,20.68,65,98,0 +0,65,0,0,0,0,252,179.5,114,30.47,90,87,1 +1,46,1,20,0,0,261,119,77.5,23.59,75,74,0 +0,63,1,40,0,0,179,116,69,22.15,95,75,0 +1,36,1,20,NA,0,194,139,93,24.33,80,62,1 +0,63,1,3,0,0,267,156.5,92.5,27.1,60,79,1 +1,51,0,0,0,0,216,112,66,23.47,90,95,0 +0,47,1,20,0,0,237,130,78,19.66,80,75,0 +0,62,0,0,0,0,240,145,82.5,28.27,63,75,0 +0,39,1,20,0,0,209,115,75,22.54,90,NA,0 +0,46,1,10,0,0,250,116,71,20.35,88,94,0 +0,54,1,9,0,1,266,114,76,17.61,88,55,0 +1,49,1,2,0,0,255,143.5,81,25.65,75,80,1 +1,44,0,0,0,0,185,115,69,22.29,65,82,0 +0,40,1,20,0,0,205,158,102,25.45,75,87,0 +1,56,1,20,0,0,270,121,79,23.58,95,93,0 +0,67,0,0,0,0,254,157,89,24.25,60,74,1 +1,53,1,20,0,0,220,123.5,75,19.64,78,73,0 +0,57,1,3,0,0,235,126.5,80,24.88,83,72,0 +1,57,0,0,0,0,220,136,84,26.84,75,64,0 +0,63,0,0,0,0,252,154,87,28.6,72,45,1 +0,62,0,0,0,1,212,190,99,29.64,100,202,1 +1,38,1,20,0,0,223,107,73,23.01,65,78,0 +0,47,1,20,0,0,300,112.5,60,20.13,76,83,0 +0,52,0,0,0,0,302,110,67.5,23.51,63,87,0 +0,63,0,0,0,0,248,164.5,76,29.35,70,NA,0 +1,42,1,10,0,0,175,116,72.5,28.61,63,95,0 +0,37,0,0,0,0,200,119,79,33.29,67,87,0 +0,41,1,20,0,0,189,150,106,33.8,85,75,1 +0,44,1,10,0,0,221,110,76,22.16,64,83,0 +0,59,0,0,0,0,258,138.5,85,34.55,65,103,1 +0,44,0,0,0,0,202,155,85,24.04,83,68,0 +0,44,1,20,NA,0,213,115,72.5,21.16,80,89,0 +0,45,0,0,0,0,183,151,101,45.8,80,63,1 +1,41,1,43,0,0,274,152,90,30.58,85,65,1 +1,60,1,20,0,0,170,179,94,26.52,90,83,1 +1,39,0,0,0,0,285,155,110,32.51,84,70,1 +0,53,0,0,0,0,210,138,86.5,22.49,88,87,0 +0,52,1,15,0,0,170,124,78,26.03,75,82,0 +0,61,0,0,0,0,210,182,101,29.35,70,83,1 +0,36,1,15,0,0,197,113,72.5,22.73,70,65,0 +0,62,0,0,0,0,261,138,82,23.89,65,77,0 +0,61,1,1,0,0,326,200,104,38.46,57,78,1 +1,41,1,43,0,0,252,124,86,28.56,100,70,0 +1,41,0,0,0,0,274,121,61.5,25.42,80,76,0 +1,53,1,20,0,0,188,138,89,18.23,60,75,0 +1,39,1,15,0,0,256,132.5,80,24.8,75,97,0 +0,51,0,0,0,0,244,102,71.5,27.38,71,77,0 +0,66,0,0,0,0,311,154,80,28.55,60,104,1 +1,60,1,30,0,0,243,126,79,28.57,80,65,0 +0,65,0,0,0,0,193,123,76.5,29.33,60,96,0 +0,63,1,20,0,1,239,134,80,26.64,88,126,0 +0,40,0,0,0,0,205,100,60,NA,60,72,0 +0,56,0,0,0,0,296,180,90,23.72,75,120,1 +0,56,1,15,0,0,269,121,75,22.36,50,66,0 +0,47,1,20,0,0,220,132.5,87,27.98,65,75,0 +0,60,0,0,0,0,275,141,84,29.66,75,105,1 +0,45,1,9,0,0,268,110,64,20.68,63,71,0 +0,48,0,0,0,0,265,145,77,24.23,74,64,1 +0,42,1,20,0,0,173,100,63,23.25,65,99,0 +0,63,0,0,0,0,273,135,82,26.76,85,56,0 +0,42,0,0,0,0,250,115,79,26.93,65,79,0 +1,40,1,43,0,0,290,138,90,27.54,85,73,1 +0,66,0,0,0,0,278,187,88,40.52,90,84,1 +1,49,1,20,0,0,197,123,69,29.62,76,60,0 +0,67,0,0,0,0,264,139,80,25.75,75,87,1 +1,51,0,0,0,0,214,145,92.5,26.09,70,NA,1 +1,48,0,0,0,0,233,138,88.5,23.62,86,68,0 +0,64,0,0,0,0,282,158,105,24.37,75,71,1 +0,41,0,0,0,0,265,136,98,42.15,90,NA,1 +1,50,0,0,0,0,257,127,82,32.23,75,117,1 +1,60,0,0,0,0,278,160.5,96,26.4,55,75,1 +0,37,1,5,0,0,185,100,68,18.38,70,72,0 +1,36,0,0,0,0,210,112,85.5,21.93,71,77,0 +1,50,1,40,0,0,175,157,88,25.09,88,85,1 +0,39,0,0,0,0,241,105,75,26.12,68,87,0 +0,46,1,3,0,0,237,112,70,20.2,75,62,0 +1,66,0,0,0,0,288,109,71,29.29,80,80,0 +0,46,0,0,0,0,200,135,97,36.81,100,97,1 +0,55,0,0,0,0,183,158,86,24.45,70,102,1 +1,41,0,0,0,0,223,112.5,80,29.44,75,58,0 +1,44,0,0,0,0,244,128,77,25.95,75,90,0 +1,38,0,0,0,0,235,118,77,25.87,60,82,0 +1,43,1,15,0,0,210,115,77.5,25.1,70,68,0 +0,41,0,0,0,0,213,112,73,24.81,62,74,0 +1,53,1,30,0,0,244,106,67.5,21.84,88,65,0 +1,43,1,NA,0,0,222,109.5,69,25.5,75,NA,0 +1,59,1,30,0,0,303,134,89,24.07,78,75,0 +0,56,1,20,0,0,246,128,64,25.54,92,92,0 +0,50,1,15,0,0,150,121,84,28.69,75,88,0 +1,46,1,30,0,0,270,131,81,26.4,75,83,0 +0,43,0,0,0,0,266,131,81,24.03,100,94,0 +1,61,0,0,0,0,246,124,70,25.63,55,78,0 +0,41,1,30,0,0,187,154,100,20.5,66,78,1 +1,49,1,NA,0,0,256,127.5,81.5,28.21,93,85,0 +0,55,0,0,0,0,286,138,82,24.27,80,90,0 +1,43,1,40,0,0,240,100,72.5,24.3,70,65,0 +1,40,0,0,0,0,154,117.5,72.5,26.82,80,87,0 +0,57,0,0,0,0,266,151,95,38.39,96,109,1 +0,56,1,3,0,0,279,136,94,32.99,50,102,1 +1,48,0,0,0,0,293,149,100,31.61,87,76,1 +0,59,1,1,0,0,259,141,86,25.97,70,86,1 +0,47,0,0,0,0,219,153,98,22.02,80,92,1 +1,64,0,0,0,0,210,123,81,26.49,60,75,0 +0,54,0,0,0,0,230,180.5,106.5,28.92,72,64,1 +0,64,0,0,0,0,320,130,77,26.24,70,74,0 +0,61,0,0,0,0,220,142,93,23.37,80,79,0 +0,61,0,0,0,0,312,136.5,76,31.13,71,85,0 +0,66,0,0,0,0,214,212,104,25.32,57,84,1 +0,38,1,3,1,0,NA,125,80,22.79,98,NA,1 +1,39,1,40,0,0,209,134,82,28.34,70,75,0 +0,58,0,0,0,0,195,153,80.5,23.36,60,73,1 +0,49,0,0,0,0,265,150,77.5,21.83,96,107,1 +0,49,0,0,1,0,254,191,124.5,28.35,78,54,1 +0,46,0,0,0,0,165,108,81,24.19,80,72,0 +0,36,1,20,0,0,159,121.5,73,20.41,72,75,0 +1,41,1,20,1,0,244,139,86,30.77,60,67,1 +0,47,0,0,0,0,174,118,86.5,26.15,110,86,0 +1,57,1,1,0,0,242,102,61,23.5,70,82,0 +1,50,0,0,0,0,301,117.5,80,28.04,60,72,0 +0,62,0,0,0,0,266,173,89,42,62,75,1 +1,39,0,0,0,0,167,109,78,21.19,68,71,0 +0,37,1,40,0,0,205,110,78,24.43,80,75,0 +1,48,1,20,0,0,210,109,77,24.12,73,79,0 +0,46,1,20,0,0,197,144,78,22.51,72,60,1 +0,52,0,0,0,0,235,129.5,83,28.86,65,79,0 +1,38,0,0,0,0,220,122,80.5,21.66,73,77,0 +0,50,1,20,0,0,265,110,74,25.26,80,88,0 +0,39,1,12,0,0,200,111,64,19.24,68,60,0 +0,55,1,4,0,0,308,124,76,27.23,75,68,0 +1,62,1,20,0,0,245,158,86.5,26.51,90,74,1 +0,60,0,0,0,0,325,182,106,27.61,80,77,1 +0,61,1,20,0,0,229,122,83,25.45,78,61,0 +0,39,1,5,0,0,236,117.5,71,27.27,77,74,0 +0,42,1,15,0,0,214,110,67,22.54,80,75,0 +0,37,0,0,0,0,300,112,60,23.67,81,75,0 +1,42,1,10,0,0,225,128,82,26.79,70,85,0 +1,36,1,40,0,0,215,118,76,18.99,96,97,0 +0,53,1,15,0,0,225,128,77,23.95,80,78,0 +1,67,0,0,0,0,257,125,67.5,25.95,65,69,0 +0,52,0,0,0,0,216,158,98,24.53,70,86,1 +0,45,1,15,0,0,224,117,74.5,16.75,68,87,0 +1,56,0,0,0,0,215,138,97,30.76,68,69,1 +1,42,1,20,0,0,216,125,86.5,23.25,65,57,0 +0,55,0,0,0,0,245,144.5,83.5,28.96,72,65,0 +1,38,1,20,0,0,253,133,92,28.82,80,63,1 +1,56,1,30,0,0,241,109,70,20.12,62,87,0 +1,61,0,0,0,0,235,127,81,28.63,56,90,0 +1,45,1,40,NA,0,278,135,84,23.79,75,79,0 +0,42,0,0,0,0,464,128,87,22.9,72,72,0 +0,49,1,9,0,0,226,106,71,22.89,85,57,0 +1,48,1,10,0,0,308,117,76,30.85,65,54,0 +0,55,1,9,0,0,248,157,82.5,22.91,89,83,0 +0,58,1,5,0,0,215,170,86,29.06,75,98,0 +1,60,0,0,0,0,240,137,84,29.51,82,88,0 +0,38,0,0,0,0,171,111,68,18.76,90,83,0 +1,53,1,30,0,0,189,110,67.5,23.59,60,63,0 +1,52,1,15,0,0,240,94,66.5,22.93,70,88,0 +1,41,1,40,0,0,239,119.5,70,29.79,70,NA,0 +0,37,1,20,0,0,186,135,91,21.48,66,84,0 +1,42,0,0,0,0,227,144,78,23.75,62,97,0 +0,64,0,0,0,0,273,155,86,27.53,100,91,1 +0,56,1,20,0,0,212,117.5,72.5,27.3,75,75,0 +0,67,0,0,0,0,249,128,68,25.81,70,87,0 +1,43,1,30,0,0,185,125,65,20.65,96,76,0 +1,45,1,18,0,0,176,124,84,20.27,77,75,0 +1,61,0,0,0,0,239,143,80,25.74,48,NA,0 +0,66,0,0,0,0,285,166,98,26.04,95,132,1 +0,34,0,0,0,0,163,107,71,23.88,73,80,0 +0,52,0,0,0,0,254,126.5,93,26.79,75,65,0 +1,45,1,43,0,0,191,139.5,75,22.3,77,NA,1 +0,43,0,0,0,0,263,115,82.5,25.91,105,NA,0 +1,49,1,30,0,0,237,114,85.5,28.57,88,92,0 +0,57,0,0,0,0,175,123,72,22.37,77,74,0 +0,48,0,0,0,0,196,96,70,22.72,60,68,0 +0,36,1,20,0,0,150,117.5,77.5,23.71,50,74,0 +0,38,1,9,0,0,180,124,66,29.29,85,68,0 +0,60,0,0,0,0,242,130,70,29.17,65,84,0 +0,40,0,0,0,0,173,106,82,23.05,85,83,0 +0,43,0,0,0,0,257,160,85,21.95,100,84,0 +1,53,0,0,0,0,193,142,89,29.56,70,78,0 +1,54,1,43,0,0,243,135,92,31.3,90,65,0 +1,56,0,0,0,0,239,177.5,98,29.44,82,105,1 +0,50,0,0,0,0,273,131,93,27.61,80,94,0 +1,46,0,0,0,0,220,136.5,99.5,27.78,80,70,1 +0,53,0,0,0,0,303,128,91,27.35,60,77,1 +0,59,0,0,0,0,310,129,70,23.29,80,70,0 +1,48,0,0,0,0,232,112.5,79,28.62,85,100,0 +0,48,0,0,0,0,164,159,90,26.73,80,63,0 +1,54,1,20,0,0,245,128,74,24.85,72,75,0 +0,36,1,3,0,0,135,108,74,22.53,73,75,0 +1,59,1,20,0,0,265,155,85,27.06,88,75,1 +0,55,0,0,0,0,291,124,85,26.89,75,80,0 +0,55,1,1,0,0,273,122,84,27.15,75,97,0 +1,40,1,43,0,0,238,129,88,26.32,95,60,0 +1,65,0,0,0,0,207,139,88,24.04,80,73,0 +1,65,1,15,0,0,219,148,90,29.35,77,97,1 +0,45,0,0,0,0,246,134,81,21.99,85,76,0 +0,40,1,20,0,0,197,124,76,18.06,90,69,0 +1,63,1,30,0,0,260,130.5,82,20.12,65,72,0 +1,46,1,30,NA,0,253,147,85,30.62,100,75,1 +0,61,0,0,0,0,189,133,83,22.82,87,NA,1 +0,40,1,20,0,1,NA,114,65,21.19,61,NA,0 +1,55,1,5,0,0,342,107.5,73,21.97,54,74,0 +0,60,1,20,0,1,180,200,122.5,44.27,88,150,0 +1,38,1,20,0,0,268,117,83,33.61,72,NA,0 +0,58,0,0,0,0,287,144,84,21.81,69,68,1 +0,39,0,0,0,0,182,109,70,20.59,72,66,0 +1,61,0,0,0,0,224,124,74,21.9,55,75,0 +1,51,1,15,0,0,238,125,80,19.36,60,66,0 +0,60,0,0,1,0,252,189,110,28.77,54,70,1 +1,36,0,0,0,0,212,168,98,29.77,72,75,1 +1,39,1,30,0,0,300,139,90,30.96,73,107,0 +0,42,0,0,0,0,165,108,72.5,24.85,82,87,0 +0,60,0,0,0,0,352,197.5,105,36.29,75,95,1 +1,52,0,0,0,1,240,146,89,24.59,64,73,1 +1,47,1,20,0,0,284,137,91,27.33,73,61,0 +0,46,0,0,0,0,219,150,81,25.43,69,93,0 +1,64,0,0,0,0,217,147,87,29.73,77,NA,1 +1,57,0,0,0,0,176,134,97,38.14,68,94,1 +1,45,0,0,0,0,203,107.5,72.5,22.32,75,83,0 +1,45,1,9,0,0,265,156.5,86,24.15,75,76,1 +0,55,0,0,0,0,219,140,93,27.78,75,70,1 +1,41,0,0,0,0,245,134,98,24.26,85,78,0 +0,50,0,0,0,0,312,125,85,27.07,88,94,0 +0,54,0,0,0,0,273,139,98,29.06,110,73,1 +0,57,1,1,0,0,254,174,84.5,24.22,90,76,1 +1,62,0,0,0,0,273,129,83,25.49,63,70,0 +0,43,0,0,0,0,213,100,70,20.06,68,NA,0 +0,46,0,0,0,0,254,136,87,31.24,88,80,0 +0,53,1,20,0,0,262,127.5,86,24.11,87,73,0 +1,52,0,0,0,0,215,129,80,29.29,70,87,0 +0,67,0,0,0,0,302,147,92,25.23,80,87,1 +0,42,0,0,0,0,185,127.5,91,23.78,67,59,0 +0,45,0,0,0,0,129,109,69,22.36,75,NA,0 +0,51,0,0,0,0,284,132,78,21.94,68,94,0 +0,60,0,0,0,0,325,123,79,25.82,63,85,0 +0,35,0,0,0,0,208,122.5,72.5,22,65,NA,0 +0,39,0,0,0,0,260,100,74.5,20.51,96,66,0 +1,68,0,0,0,1,164,142,85,30.28,70,120,1 +0,54,0,0,0,0,270,98,64,22.02,67,75,0 +0,38,0,0,0,0,186,105,57,21.1,85,68,0 +1,39,0,0,0,0,258,105,69,24.1,52,79,0 +0,36,1,5,0,0,228,111,68,23.86,88,68,0 +1,36,1,30,0,0,155,126,72,25.14,50,70,0 +0,44,0,0,0,0,270,131.5,76,22.19,68,113,0 +1,48,0,0,0,0,323,116,72,26.22,69,99,0 +0,54,1,20,0,0,242,125,76,22.16,70,87,0 +0,45,1,30,0,0,203,131,85,23.47,94,70,0 +0,47,1,25,0,1,258,195,90,NA,86,NA,1 +1,41,1,40,0,0,310,117.5,80,26.74,80,78,0 +1,51,0,0,0,0,245,124,69,21.52,85,NA,0 +0,34,1,10,0,0,206,101,63,21.5,75,66,0 +1,41,0,0,0,0,173,130,80,28.39,65,61,0 +0,62,0,0,1,0,283,130,80,35.2,75,83,1 +1,38,0,0,0,0,319,121,86,29.77,72,77,0 +0,48,0,0,0,0,230,129,84.5,24.73,78,NA,0 +0,55,0,0,0,0,220,117.5,84,26.2,90,NA,0 +0,55,0,0,0,0,282,158.5,81,30.24,54,70,0 +0,46,1,20,0,0,188,97,65,21.17,68,60,0 +1,36,1,20,0,0,304,118,90,32.63,71,80,1 +0,52,0,0,0,0,268,109,70,23.74,75,78,0 +1,49,1,20,0,0,221,101,61,23.94,75,79,0 +0,39,1,20,0,0,269,97,64,23.09,82,67,0 +0,54,0,0,0,0,288,137.5,77.5,22.19,68,NA,0 +0,47,0,0,0,0,250,114,77,24.16,80,93,0 +1,62,1,20,0,1,194,151.5,88,21.61,75,105,1 +1,39,1,20,0,0,258,110,65,19.97,65,85,0 +1,45,1,5,0,0,272,140,94,27.87,61,79,0 +0,39,0,0,NA,0,242,113,85,25.54,85,104,0 +0,46,1,30,0,0,219,107,69,21.4,66,NA,0 +0,63,1,20,0,0,260,168,98,21.05,85,73,0 +1,41,0,0,0,0,270,157,101,33.11,75,75,1 +1,44,1,15,0,0,340,125,78,26.41,56,90,0 +0,37,1,20,0,0,223,115,72,22.71,76,63,0 +1,44,1,20,0,0,197,118,81,17.44,70,75,0 +1,49,1,40,0,0,240,148,85,29.69,65,68,1 +0,53,1,20,0,0,240,131,82,24.22,66,80,0 +0,51,1,4,0,0,220,112,74,31.23,88,66,0 +1,43,0,0,0,0,200,133,78,26.72,55,71,0 +0,60,0,0,0,0,328,127,70,22.36,75,63,0 +1,39,1,20,0,0,222,97.5,57.5,23.22,73,64,0 +1,56,1,60,0,0,246,125,79,29.64,70,85,0 +0,59,0,0,0,0,246,189,111,19.88,90,85,1 +0,56,0,0,0,0,280,123,77,27.96,65,NA,0 +0,43,1,1,0,0,186,120,72,24.33,80,86,0 +0,48,1,1,0,0,197,101,67,21.35,88,100,0 +0,61,0,0,0,0,311,110,78.5,29.04,71,77,0 +0,55,0,0,1,0,368,204,94,25.2,100,81,1 +1,39,1,20,0,0,220,145,99,26.5,73,90,1 +0,42,1,30,0,0,218,126,87,22.5,75,73,0 +1,51,1,30,0,0,241,126.5,78.5,29.91,85,70,0 +0,54,0,0,0,0,219,143.5,89,28.47,73,96,0 +0,52,0,0,0,0,225,157.5,80.5,24.36,79,NA,1 +0,64,0,0,0,0,312,160,82,27.59,140,94,1 +0,58,0,0,0,0,200,158,101,23.06,85,77,1 +0,42,1,20,0,0,237,105,75,23.85,70,87,0 +0,41,1,15,0,0,207,111,60,18.48,60,76,0 +1,43,1,25,0,0,245,126,88.5,23.16,92,NA,0 +0,63,1,20,0,0,238,136,66,20.2,60,92,0 +0,46,0,0,0,0,259,138,88,25.11,65,NA,0 +0,53,0,0,1,0,250,144,98,28.78,90,78,1 +1,41,1,20,0,0,238,128,86,26.09,80,72,0 +0,53,1,10,0,0,276,130,86,27.09,75,56,0 +0,59,0,0,0,0,339,110,69,26.89,75,73,0 +0,45,0,0,0,0,231,157.5,104.5,22.86,75,92,1 +1,49,1,5,0,0,187,110,67,19.26,78,85,0 +1,41,1,30,0,0,198,106,71,21.51,85,84,0 +1,39,1,30,0,0,196,121,83,25.38,90,68,0 +1,50,1,40,0,0,225,137,89.5,25.77,70,91,0 +0,58,1,5,0,0,177,114,72.5,24.77,87,NA,0 +1,53,0,0,0,0,202,140.5,90,25.82,85,74,1 +0,54,1,3,0,1,231,127.5,83,21.31,70,115,1 +0,40,1,20,0,0,210,118,79,21.21,130,84,0 +1,51,1,30,0,0,230,171,112,25.08,95,88,1 +1,40,1,20,0,0,283,146,95,23.27,80,64,0 +0,38,1,10,0,0,203,100,70,22.73,63,80,0 +0,48,0,0,0,0,200,118,78,24.53,63,98,0 +0,46,1,15,0,0,244,98,57,24.01,84,95,0 +1,59,1,15,0,0,212,106,66,26.46,85,117,0 +1,37,0,0,0,0,218,130,89,22.7,77,88,0 +1,40,1,35,0,0,185,133,80,21.86,63,58,0 +1,59,0,0,0,0,282,114,67,28.04,58,79,0 +1,46,1,30,0,0,198,128,85,29,75,77,0 +0,67,0,0,0,0,248,215,105,22.91,90,97,1 +0,40,0,0,0,0,290,122,85,24.06,87,70,0 +1,55,0,0,0,0,239,159,102,32.35,75,71,1 +0,52,0,0,0,0,245,145,89,25.02,90,80,0 +0,42,1,20,0,0,200,95,55,23.68,60,83,0 +0,54,0,0,1,0,201,156,93,27.91,80,70,1 +0,58,1,3,0,0,290,155,82.5,29.5,85,113,0 +0,45,1,20,0,0,285,116,87,23.85,65,55,0 +1,67,0,0,0,0,203,122,74,15.54,96,79,0 +1,68,1,10,0,0,250,109,73,24.68,72,66,0 +0,61,0,0,0,0,290,170,98,26.98,80,84,1 +0,55,0,0,0,0,258,123,89,31.35,85,84,0 +0,42,0,0,0,0,246,125,80,29.02,100,98,1 +0,53,0,0,0,0,174,165,93,27.45,108,NA,1 +1,39,1,30,0,0,220,135,85,27.17,70,81,1 +1,40,1,35,0,0,195,122.5,66.5,19.98,60,72,0 +1,39,0,0,0,0,235,120,80,27.23,62,87,0 +0,63,0,0,0,0,223,178,88.5,27.18,85,91,1 +0,55,0,0,0,0,308,124,87,31.82,75,84,1 +0,39,0,0,0,0,167,127.5,86.5,28.28,72,82,0 +0,39,1,20,0,0,185,111,67,23.87,70,87,0 +1,51,1,20,0,0,240,146.5,83,25.62,83,140,0 +0,54,0,0,0,0,245,117,76,26.64,65,76,0 +0,48,0,0,0,0,310,124,74,25.94,70,73,0 +1,51,1,20,0,0,300,134,86.5,24.76,90,81,0 +0,65,0,0,0,0,256,149,96,29.75,90,80,1 +0,65,0,0,NA,0,270,165,98,21.66,62,92,1 +1,39,0,0,0,0,202,136.5,79,24.35,73,60,0 +0,47,1,3,0,0,155,122.5,77.5,21.34,65,78,0 +1,59,1,43,0,0,207,132.5,66,26.84,65,76,0 +1,66,0,0,0,0,276,159,82,31.42,90,65,1 +1,56,1,25,0,0,255,138,80,23.44,67,79,0 +1,41,0,0,0,0,215,113,68,25.13,65,87,0 +0,41,0,0,0,0,277,113.5,75,29.73,63,90,0 +0,41,0,0,0,0,179,116,67,18.58,73,68,0 +1,45,1,20,0,0,226,119,75,25.34,70,66,0 +1,37,1,20,0,0,245,138,84,27.45,67,76,0 +0,43,0,0,0,0,240,141,91,29.25,78,65,1 +0,46,0,0,0,0,184,188,123,34.36,90,NA,1 +1,41,0,0,0,0,218,137,86,25.52,60,88,0 +1,44,1,10,0,0,229,177.5,120,39.88,104,78,1 +1,36,0,0,0,0,174,131,86,26.23,75,64,0 +0,60,0,0,0,0,285,156,100,23.02,80,85,1 +0,46,1,20,0,0,212,122.5,75.5,23.51,67,103,0 +0,44,0,0,0,0,175,135,81,26.38,71,NA,0 +0,55,1,3,0,0,323,197,118,27.51,80,112,1 +0,61,1,15,0,0,206,130,80,21.93,72,82,0 +1,45,1,20,0,0,246,111,72,21.79,75,118,0 +0,45,0,0,0,0,304,148,106,22.98,98,72,1 +1,37,1,30,0,0,243,128,84,27.47,80,NA,0 +0,52,1,25,0,0,235,119,82,24.25,77,79,0 +0,46,0,0,0,0,232,90,60,19.2,60,82,0 +1,44,0,0,NA,1,190,122,81,36.12,70,143,0 +0,42,1,15,0,0,177,112.5,70,20.62,86,83,0 +0,58,0,0,0,0,188,160,120,35.58,88,85,1 +0,38,1,15,0,0,176,110,80,24.03,100,113,0 +0,51,1,10,0,0,234,98,68,18.8,79,NA,0 +0,64,0,0,0,0,268,135,74,30.18,76,83,0 +0,53,1,14,0,0,252,120,74,21.14,68,NA,0 +0,59,0,0,0,0,242,134,86,27.49,65,NA,0 +1,65,0,0,0,0,NA,152.5,97.5,28.35,65,73,0 +0,40,0,0,0,0,195,109.5,72,22.36,70,85,0 +0,57,0,0,0,0,197,96,64,18.59,60,77,0 +0,48,1,10,0,0,268,117.5,80,36.11,72,67,1 +0,45,0,0,0,0,226,180,99,45.79,110,NA,1 +1,40,1,30,0,0,212,120,80,24.01,65,57,0 +1,43,1,40,0,0,220,165,105,31.07,75,114,1 +1,54,0,0,0,0,224,170,102,29.18,72,NA,1 +1,45,1,30,0,0,240,141,89,25.01,95,76,0 +1,36,1,20,0,0,226,124,76,25.84,75,70,0 +1,63,0,0,0,0,237,113,80,27.61,90,71,0 +0,33,1,15,0,0,199,116,81,21.61,75,93,0 +0,56,0,0,0,0,206,140,87,27.72,60,85,1 +0,43,1,20,0,0,265,107,68,21.08,90,95,0 +0,60,0,0,0,1,260,95.5,59,25.94,90,160,0 +1,44,0,0,0,0,243,146,91,26.72,80,104,0 +1,61,1,10,0,0,258,130,70,24.35,67,78,0 +1,61,0,0,0,0,182,209,133,30.77,65,75,1 +1,46,1,45,0,0,209,112.5,65,27.48,75,78,0 +1,38,1,10,0,0,168,113,69.5,23.68,58,NA,0 +0,48,1,10,0,0,266,115,75,31.16,75,90,0 +0,55,0,0,0,0,210,112,76,20.53,71,65,0 +0,50,1,8,0,1,292,132,82,22.54,80,110,0 +0,46,0,0,0,0,190,107.5,80,25.13,72,75,0 +0,47,0,0,0,0,234,127.5,83.5,27.65,85,89,0 +0,44,0,0,0,0,173,136.5,77.5,26.62,66,72,0 +0,44,1,15,0,0,198,112,68,22.17,70,NA,0 +0,41,1,20,0,0,208,119,82,25.25,73,NA,0 +1,55,0,0,0,0,227,129,81,26.57,55,74,0 +0,47,1,10,1,0,186,150,85,22.53,62,93,1 +0,48,1,9,0,0,195,109,71,21.1,73,65,0 +0,40,1,15,0,0,284,124,83,27.9,75,71,0 +0,35,1,15,0,0,177,110,70,25.71,65,84,0 +0,49,0,0,0,0,305,135,89,25.04,62,117,0 +1,38,1,30,0,0,195,146,104,29.6,75,80,1 +1,50,0,0,0,0,227,152,99,29.46,78,115,1 +1,38,1,40,0,0,245,154,95.5,30.02,92,87,1 +0,57,1,15,0,0,250,125,74,21.08,80,72,0 +1,53,1,50,0,0,306,127,82.5,31.22,72,NA,0 +0,44,1,10,0,0,152,110,64,25.71,75,83,0 +0,47,0,0,0,0,222,162.5,92.5,23.45,78,80,1 +1,56,0,0,0,0,243,134,86,25.94,81,66,0 +1,61,0,0,1,1,270,177.5,95,28.15,62,123,1 +0,38,1,1,0,0,300,122,84,27.26,96,68,0 +1,56,0,0,0,0,252,107,66,25.11,60,72,0 +1,46,1,20,0,0,235,150,96.5,27.22,94,78,0 +1,53,1,15,0,0,161,116,74.5,19.82,80,90,0 +1,49,0,0,0,0,168,127,74,27.38,63,85,0 +0,46,1,15,0,0,247,125,80,21.51,60,80,0 +0,37,1,20,0,0,250,138,90,19.56,96,74,0 +1,50,0,0,0,0,219,145,100,26.26,78,108,1 +0,51,1,9,0,0,320,145,85,24.03,75,98,1 +0,64,0,0,0,0,253,295,135,38.82,92,70,1 +1,44,1,20,0,0,319,158,90,29.15,89,100,1 +1,37,0,0,0,0,176,125,80,26.75,72,65,0 +0,62,0,0,0,0,239,126,81,29.35,95,70,0 +1,54,1,40,0,0,230,145,90,25.72,75,85,0 +0,39,0,0,0,0,190,120,80,27.16,70,85,0 +0,47,1,5,0,0,196,134,86,26.2,71,NA,0 +0,44,1,5,0,0,181,150,101,23.74,95,86,1 +0,51,0,0,0,0,220,98,64.5,21.14,80,79,0 +0,41,1,5,0,0,220,108.5,80,20.18,94,NA,0 +1,63,0,0,0,0,207,130,72,26.76,68,81,0 +0,46,1,10,0,0,269,134,78,26.8,105,104,0 +1,40,1,43,0,0,258,135,93,31.69,75,57,1 +1,56,1,20,0,0,340,134,89.5,21.91,50,72,0 +1,44,1,20,0,0,277,114,81,27.51,62,76,0 +1,51,1,13,0,0,245,137,76,22.26,83,73,0 +1,45,1,30,0,0,233,151,95,29.17,78,95,1 +1,56,0,0,0,0,258,111,68.5,24.04,60,70,0 +0,60,0,0,0,0,215,113,71,26.69,77,NA,0 +0,40,1,10,0,0,210,103,71,24.4,73,68,0 +0,52,0,0,0,0,248,155,93,23.09,75,70,0 +0,64,0,0,0,0,251,132,82,28.87,70,82,0 +1,38,1,25,0,0,210,145.5,87,24.67,72,89,1 +0,50,0,0,0,0,258,144,88,24.19,100,83,1 +0,41,1,11,0,0,201,108,71,20.47,76,75,0 +1,57,0,0,0,0,303,160.5,98.5,25.84,81,100,1 +0,51,1,5,0,0,248,139,81,31.16,68,95,0 +0,50,0,0,0,0,296,134.5,89,24.91,63,76,0 +0,46,1,20,0,0,218,115.5,62,23.48,65,77,0 +0,53,0,0,0,0,235,132,84,30.1,80,63,0 +0,54,0,0,0,0,255,132.5,81,26.77,82,NA,1 +0,65,0,0,0,0,240,155,84,29.93,92,91,1 +0,58,0,0,0,0,234,137.5,89.5,24.25,58,72,0 +1,56,1,20,0,0,278,133,84,22.67,85,96,0 +1,46,1,20,0,0,269,135,95,26.55,75,92,0 +1,64,0,0,0,0,203,130,78,28.66,72,70,0 +1,43,1,20,0,0,243,155,100,24.89,80,63,1 +1,35,1,20,0,0,231,122,72.5,22.78,72,93,0 +1,46,1,30,0,0,216,107,73,31.46,100,NA,0 +0,59,0,0,0,0,271,117.5,65,19.77,70,89,0 +0,50,0,0,0,0,261,129,80,23.06,85,90,0 +1,62,1,40,0,0,203,148,96,30.84,70,95,1 +0,53,1,9,0,0,210,132,84.5,27.08,110,84,0 +1,52,1,25,0,0,206,173,117,29.63,75,77,1 +0,57,0,0,0,0,301,119,80,24.79,58,73,0 +0,46,1,1,0,0,241,130,82,34.84,62,93,0 +1,49,1,15,0,0,215,122.5,76,27.17,58,61,0 +1,47,1,25,0,0,261,105,74,20.57,85,75,0 +0,65,0,0,0,0,266,120,73,24.33,63,69,0 +0,41,0,0,0,0,237,125,83,24.56,73,61,0 +0,61,0,0,0,0,217,189,121,37.41,85,100,1 +0,41,1,4,0,0,176,113,75,22.29,80,55,0 +0,53,0,0,0,0,370,123,83,24.64,63,74,0 +1,36,0,0,0,0,182,145,102,30.92,72,70,1 +1,43,0,0,0,0,245,105,59.5,30.55,85,77,0 +1,37,1,20,0,0,292,130,85,28.07,91,81,0 +0,62,0,0,0,0,246,171,101,23.88,75,78,1 +1,64,0,0,0,0,193,114,79,16.59,75,64,0 +0,40,1,20,0,0,247,125,83,22.55,85,80,0 +0,49,1,20,0,0,229,118.5,76.5,21.42,76,NA,0 +0,49,0,0,1,0,300,131,88,26.85,70,73,1 +0,46,0,0,0,0,213,115,72.5,19.98,80,107,0 +1,47,1,18,0,0,439,145,74,22.42,100,90,1 +0,38,0,0,0,0,171,110,71,21.8,82,78,0 +1,39,1,5,0,0,227,132,92,26.47,63,74,1 +1,43,1,35,0,0,207,117,65,24.42,60,100,0 +0,43,0,0,0,0,145,112,83,22.36,90,70,0 +1,50,1,30,0,0,210,121.5,78,26.29,88,77,0 +1,48,0,0,0,0,245,144,96.5,32.58,75,77,1 +1,45,0,0,0,0,258,114,80,26.6,80,68,0 +0,55,1,20,0,0,233,128,94,36.62,80,95,1 +0,61,1,5,0,0,243,149,77,22.73,86,NA,1 +1,53,0,0,0,0,240,174.5,103,29.82,81,74,1 +0,50,1,20,0,0,213,140,82,22.18,64,72,1 +0,40,0,0,0,0,242,110,75,16.69,58,68,0 +0,50,0,0,0,0,214,129,76,26.39,80,75,0 +1,56,0,0,0,0,241,130,85,25.79,68,78,1 +0,44,1,10,0,0,250,136.5,83.5,21.33,70,95,0 +0,37,1,20,0,0,240,120,79,23.09,75,80,0 +0,42,0,0,0,0,188,122.5,75,24.56,89,68,0 +0,54,0,0,0,0,275,113.5,75.5,19.63,66,78,0 +0,39,0,0,0,0,252,128,93,30.36,105,63,1 +0,38,0,0,0,0,227,117.5,77.5,30.24,85,NA,0 +1,42,0,0,0,0,253,116,72,21.96,60,88,0 +0,55,0,0,0,0,278,125,80,26.27,64,78,0 +1,60,0,0,0,0,232,165,77,29.23,69,57,0 +0,66,1,15,0,0,NA,188,108.5,20.49,90,NA,1 +0,34,0,0,0,0,189,108,66,20.81,78,88,0 +0,44,1,15,0,0,242,135,89,23.29,70,77,0 +0,49,1,3,0,0,247,121,82,29.07,72,69,0 +1,50,0,0,0,0,230,133,91,25.74,72,70,1 +0,47,0,0,0,0,223,120,74,20.27,80,76,0 +0,63,0,0,0,0,263,150,96.5,24.85,72,75,1 +0,39,1,30,0,0,277,148,100,24.12,85,72,1 +1,43,1,43,0,0,215,122,76,26.84,85,74,0 +0,59,0,0,0,0,320,182,98,30.28,88,NA,1 +0,37,1,30,0,0,NA,115,79,28.41,85,NA,0 +1,41,1,10,0,0,210,121.5,82.5,23.27,78,89,0 +1,59,0,0,0,0,300,163,78,28.83,53,95,0 +0,51,0,0,0,0,287,139,92,37.48,75,74,1 +1,62,1,3,0,0,234,117,80,26.97,78,67,0 +0,51,1,18,0,0,176,146,94,27.42,80,85,1 +0,46,1,5,0,0,240,125,74,22.89,87,76,0 +1,37,0,0,0,0,300,118.5,85.5,25.83,68,82,0 +0,60,0,0,0,1,258,142,87,32.53,82,145,1 +1,52,1,20,0,0,215,98,65,20.87,68,76,0 +1,40,1,30,0,0,197,116,73,24.01,80,83,0 +0,52,1,3,0,0,210,185,114,27.01,70,83,1 +0,45,0,0,0,0,220,126,82,23.87,79,90,0 +0,60,1,20,1,0,294,220,118,24.22,90,59,1 +0,41,1,5,0,0,210,116,75.5,23.54,67,NA,0 +1,39,1,15,0,0,232,115,72.5,30.22,90,105,0 +0,46,1,5,0,0,220,123,88,32.49,94,79,0 +0,40,1,1,0,0,205,125,73.5,20.68,83,99,0 +1,44,0,0,0,0,198,119,82,28.04,75,66,0 +1,38,0,0,0,0,208,121.5,74,27.05,53,90,0 +1,60,0,0,0,0,276,144,78,26.98,60,88,1 +0,42,1,15,0,0,216,120,70,21.93,88,88,0 +1,44,0,0,0,0,254,123,90,24.44,66,72,1 +0,47,1,15,0,0,246,113,75,21.66,68,68,0 +0,55,0,0,0,0,330,103,73,24.5,85,67,0 +1,48,1,15,0,0,170,132,91,27.61,78,57,0 +0,61,1,20,0,0,245,140,73,30.74,90,91,1 +1,62,1,23,0,0,286,164,88,19.53,85,126,1 +0,64,1,9,0,0,250,145,79,25.16,73,86,1 +1,46,1,20,0,0,270,120.5,78,22.54,83,83,0 +0,54,0,0,0,0,287,145,91,23.81,68,83,1 +1,42,1,35,0,0,218,116,86,17.81,85,69,0 +0,41,1,30,0,0,NA,122.5,80,18.86,105,NA,0 +1,55,1,15,0,0,222,155,92.5,28.35,67,68,1 +0,35,0,0,0,0,170,98.5,69.5,19.64,71,77,0 +0,40,0,0,0,0,197,107,61,23.65,80,80,0 +1,44,1,20,0,0,157,108,70,20.56,60,82,0 +0,52,1,20,0,0,244,127.5,72.5,24.29,67,118,0 +0,63,0,0,0,0,252,120.5,75,24.3,78,77,0 +1,39,0,0,0,0,203,117.5,77.5,27.29,88,60,0 +0,51,1,3,0,0,398,161,96,23.63,77,83,1 +1,59,0,0,0,0,207,148,98,25.63,80,93,1 +0,51,1,20,0,0,264,139.5,89,29.38,70,76,0 +1,67,0,0,0,0,214,127.5,80,22.11,69,84,0 +0,47,1,20,0,0,272,127.5,87.5,22.35,80,72,0 +0,64,0,0,0,0,293,116,80,26.81,80,87,0 +1,50,1,3,0,0,200,105,68,23.3,65,68,0 +1,63,1,20,0,0,269,180,101,24.42,72,84,1 +0,39,0,0,0,0,250,123,92.5,29.23,90,71,0 +1,38,1,10,0,0,219,115,71,24.58,65,93,0 +0,42,1,30,0,0,187,96,67,24.23,72,84,0 +1,38,1,5,0,0,243,130.5,85.5,19.53,85,79,0 +0,52,1,20,0,0,190,117,75,21.48,67,67,0 +1,60,1,3,0,0,267,168.5,108,26.67,108,83,1 +1,41,1,5,0,0,218,129.5,93,27.8,58,83,0 +0,41,1,20,0,0,195,148,108,18.21,76,69,0 +0,56,1,5,0,0,266,134.5,78.5,30.78,79,84,0 +0,38,1,20,0,0,229,117.5,67.5,23.47,78,80,0 +0,63,0,0,0,0,264,176,99,23.62,65,65,1 +0,42,1,7,0,0,273,111,73,19.27,60,89,0 +0,40,0,0,0,0,162,109,71,20.99,66,85,0 +1,51,0,0,0,0,250,125,80,26.98,67,108,0 +0,60,1,3,0,0,314,141,93,25.23,105,94,0 +1,40,1,30,0,0,219,131,85.5,31.96,77,74,0 +1,34,1,25,0,0,250,119,77,29.04,63,80,0 +0,40,0,0,0,0,230,123.5,81,27.91,95,65,0 +0,54,0,0,0,0,195,163.5,103,26.89,56,80,1 +1,36,0,0,0,0,194,117,90,27.08,73,87,0 +0,39,1,3,0,0,273,116,86,28.73,75,NA,0 +1,38,0,0,0,0,224,127.5,81,20.39,80,90,0 +1,37,0,0,0,0,166,128.5,83,26.81,58,108,0 +0,39,1,20,0,0,160,128.5,74.5,20.56,60,83,0 +0,60,0,0,0,0,238,134,84,27.49,80,66,1 +0,58,1,20,0,0,281,134,81,22.54,58,74,0 +0,56,1,18,0,0,292,111,70,23.17,72,74,0 +0,50,1,30,0,0,203,128.5,82,18.99,55,84,0 +1,57,1,10,0,0,250,148,91,27.6,88,103,1 +0,41,1,5,0,0,240,107,68.5,23.47,65,83,0 +1,40,1,20,0,0,193,129,73,19.11,76,80,0 +1,51,1,20,0,0,243,130,86.5,29.86,85,74,0 +1,43,1,30,0,0,292,121,75,21.73,84,82,0 +0,36,0,0,0,0,200,112,76,26.03,75,62,0 +0,64,0,0,0,0,295,127,78,22.89,67,73,0 +1,50,1,43,1,0,255,126.5,92.5,25.35,90,74,1 +0,51,0,0,0,0,197,126,86,24.16,75,NA,0 +0,49,0,0,0,0,285,138,91,25.94,83,84,1 +0,59,1,20,0,0,206,167,89.5,25.83,72,75,1 +0,62,0,0,0,0,300,205.5,104.5,32.19,94,117,1 +0,56,1,1,1,0,289,150,92,25.68,85,84,1 +0,57,0,0,0,0,287,136,92,26.24,65,71,0 +1,48,1,20,0,0,253,118.5,73,26.25,69,70,0 +0,38,1,15,0,0,199,112,68.5,23.88,85,67,0 +0,49,0,0,0,0,262,145,81,23.1,75,83,1 +0,65,0,0,0,0,355,138,79,28.38,75,108,0 +1,42,1,20,0,0,223,115,70,24.58,72,81,0 +1,45,1,30,0,0,307,110,78,28.57,68,69,0 +0,58,1,20,0,0,NA,126,77,30.08,78,NA,0 +1,38,1,15,0,0,220,119.5,85.5,31.39,70,85,0 +0,53,0,0,0,0,156,141.5,95,39.6,80,NA,1 +0,48,0,0,0,0,240,119,80,31.67,60,79,0 +1,58,1,30,0,0,234,167.5,95,27.73,71,66,0 +1,60,1,3,0,0,239,130,78,28.36,60,99,0 +0,36,0,0,0,0,165,110,75.5,26.13,86,NA,0 +0,55,0,0,0,0,225,136.5,85.5,20.56,60,90,0 +1,54,0,0,0,0,267,148,92.5,26.58,75,98,1 +1,45,1,5,0,0,227,166,102,29.32,58,85,1 +0,64,0,0,0,0,300,144,80,25.81,75,102,1 +0,49,1,1,0,0,248,137,79,21.6,85,74,0 +0,45,0,0,0,0,215,152.5,82,25.92,100,75,1 +1,48,0,0,0,0,215,127,81,24.87,76,76,0 +0,45,1,20,0,0,156,119,83,22.02,68,78,0 +0,57,0,0,0,0,289,125,74,18.64,66,69,0 +1,64,1,18,0,0,219,172.5,75,29.29,NA,91,1 +0,60,1,15,0,0,236,183,107,25.45,86,NA,1 +1,50,1,20,0,0,329,126,84,21.45,65,65,0 +0,58,0,0,0,0,270,145,95,23.17,77,120,1 +1,40,1,30,0,0,267,146,93.5,27.47,87,89,1 +0,38,1,20,0,0,199,117,78.5,18.18,90,73,0 +0,54,1,5,0,0,272,132.5,91,23.09,70,78,0 +0,39,0,0,0,0,195,105,70,26.97,80,64,0 +0,46,1,20,0,0,203,117,68,21.5,110,85,0 +0,60,1,10,0,0,212,186,102,23.06,80,60,0 +1,62,0,0,1,0,190,183,93,28.96,90,77,1 +0,60,0,0,0,0,222,118,73,24.48,75,90,0 +1,40,0,0,0,0,206,110,67.5,25.88,62,80,0 +0,54,1,1,0,0,262,136,86,23.28,75,69,0 +0,47,0,0,0,0,294,109,72.5,28.59,82,77,0 +1,58,1,20,0,0,251,135,85.5,21.24,88,103,0 +0,45,0,0,0,0,231,107.5,57.5,NA,81,NA,0 +0,51,0,0,0,0,160,140.5,84,26.28,76,122,1 +1,47,1,30,0,0,143,114,79,26.59,69,72,0 +0,35,1,30,0,0,245,148,84,23.74,60,73,0 +1,44,1,40,0,0,200,120,80,31.44,68,74,0 +1,50,1,25,0,0,215,134,80,29.98,67,75,0 +1,57,1,43,0,0,185,134,90.5,27.77,87,103,1 +1,39,1,20,0,0,212,107.5,67.5,27.43,87,77,0 +1,41,1,20,0,0,255,126,78,25.48,80,76,0 +0,47,0,0,0,0,230,119,87,29.23,75,NA,0 +0,45,0,0,0,0,211,127.5,80,27.05,72,68,0 +1,49,1,20,0,0,212,141,99,25.94,60,70,1 +0,38,1,1,0,0,200,124,84,20.67,80,75,0 +0,59,0,0,0,0,278,141,79,26.45,70,94,0 +0,38,1,5,0,0,190,121,79,25.59,90,84,0 +0,39,1,20,0,0,240,120,80,24.79,81,75,0 +1,59,1,60,0,0,298,153.5,105,25.05,70,84,1 +1,64,0,0,0,0,271,134,79,24.95,106,90,0 +0,51,0,0,1,0,283,152,99,31.63,62,73,1 +1,57,0,0,0,0,241,163.5,93,31.68,80,67,1 +0,40,0,0,0,0,251,135,87,31.6,75,80,0 +1,62,1,20,0,0,292,130,77.5,24.75,72,72,0 +0,53,0,0,0,0,245,103,68,21.8,60,63,0 +0,37,1,20,0,0,168,117,74,21.51,67,77,0 +0,48,0,0,0,0,197,107,73,19.78,63,76,0 +0,40,0,0,0,0,152,122,78,18.92,65,80,0 +0,51,0,0,0,0,225,155,92.5,23.84,72,63,1 +0,48,1,5,0,0,296,117,73,24.59,70,78,0 +1,64,1,8,0,0,211,120,75,18.7,52,61,0 +1,44,1,30,0,0,334,131,74,28.82,80,77,0 +0,64,0,0,0,0,241,144,84,30.93,80,66,1 +1,41,1,20,0,0,196,147.5,92.5,22.72,75,71,1 +1,48,0,0,0,0,222,113,71.5,30.5,78,80,0 +1,49,0,0,1,0,215,183,114.5,29.25,85,90,1 +1,39,1,20,0,0,188,120,74,26.48,65,80,0 +0,61,1,6,0,0,290,178,91,28.87,110,80,1 +0,58,0,0,0,0,229,128,76,32.49,68,75,0 +1,52,0,0,0,0,196,126,80,22.32,104,74,1 +0,48,1,3,0,0,249,132,78,23.1,70,137,0 +0,45,1,15,0,0,210,127,76.5,21.67,83,72,0 +0,66,0,0,0,0,232,175,94,29.84,95,67,1 +1,44,1,20,0,0,205,160,108,22.92,83,76,1 +1,60,0,0,0,0,245,119,82,28.56,70,89,0 +1,42,0,0,0,0,249,142.5,90,26.14,59,82,1 +1,42,0,0,0,0,160,100,73,22.56,64,93,0 +0,67,0,0,1,0,251,192,102,44.09,55,62,1 +0,63,0,0,0,0,207,127,75,22.26,70,77,0 +1,62,0,0,0,0,214,110,62.5,23.8,77,95,0 +1,50,0,0,0,0,296,129,85,25.86,56,106,0 +0,63,0,0,0,0,250,117.5,75,25.88,75,91,0 +0,45,0,0,0,0,222,121,78.5,24.58,78,NA,0 +0,41,1,10,0,0,193,134.5,83,22.28,85,127,0 +0,44,1,9,0,0,226,114,83,24.16,80,NA,0 +0,53,1,9,0,0,278,131,87,33.38,63,74,0 +1,53,0,0,0,0,254,160,92,25.61,60,80,1 +0,38,1,9,0,0,196,127,80,24.6,74,NA,0 +0,42,1,10,0,0,192,96.5,71,26.03,61,68,0 +1,47,1,9,0,0,184,107,66.5,16.87,65,70,0 +0,58,0,0,0,1,267,157,94,33.32,92,205,1 +1,45,0,0,0,0,162,125,89,27.98,85,83,0 +1,50,1,9,NA,0,296,119,90,23.55,75,69,0 +1,55,1,20,0,0,220,180,108,23.59,82,90,1 +1,67,1,15,0,0,204,185,100,22.69,75,114,1 +1,56,1,1,0,0,280,147,94,28.3,63,85,0 +0,37,0,0,NA,0,145,105,73,23.44,58,80,0 +1,38,1,20,0,0,180,123,69,22.7,72,70,0 +0,63,0,0,0,0,210,148,85.5,24.01,76,88,1 +1,40,1,15,0,0,246,141,102,26.17,85,67,0 +0,45,0,0,0,0,262,133,83,22.19,76,92,0 +0,54,0,0,0,0,193,118,84,24.9,70,82,0 +0,67,0,0,0,0,218,160,100,20.5,88,71,1 +0,39,0,0,0,0,152,114,66.5,24.56,70,71,0 +0,41,0,0,0,0,239,123,70,20.2,65,NA,0 +1,34,1,10,0,0,210,120,85,24.39,68,NA,0 +0,40,1,20,0,0,220,120,75,19.32,78,NA,0 +0,46,1,20,0,0,253,118,82,19.7,100,70,0 +1,35,1,40,0,0,175,112,62.5,21.03,73,69,0 +1,48,0,0,0,0,202,138,96,27.97,68,85,1 +1,47,1,20,0,0,177,150,101,28.96,75,60,1 +0,43,1,15,0,0,199,137,81,21.85,70,72,0 +1,52,1,1,0,0,211,118.5,82.5,24.83,76,80,0 +1,45,0,0,1,0,258,126,82,27.18,72,70,1 +1,42,1,25,0,0,256,121.5,74,23.59,70,115,0 +0,56,0,0,0,0,207,133,76,23.42,62,85,0 +1,63,0,0,0,0,260,159.5,91,27.01,68,66,1 +0,52,0,0,0,0,272,118.5,69,18.98,70,75,0 +1,46,1,20,0,0,208,164,107,20.63,63,70,1 +1,49,1,40,0,0,222,118.5,82,28.47,88,87,0 +0,44,0,0,0,0,219,129,90,33.47,88,73,0 +1,42,0,0,0,0,228,130,92,24.86,85,76,0 +0,64,1,2,1,0,230,177,110,28.91,90,113,1 +0,59,1,15,0,0,167,156,104,15.96,72,45,1 +0,59,0,0,NA,0,240,195,118,23.82,80,73,1 +1,54,0,0,0,0,175,116,78.5,25.82,94,67,0 +1,57,1,40,0,0,280,117,80,26.56,75,60,0 +0,53,1,20,0,0,242,127,79,19.64,70,74,0 +0,35,1,20,0,0,231,150,90,23.09,83,72,0 +0,46,0,0,0,0,238,162,87.5,26.95,100,93,1 +0,40,0,0,0,0,314,124,86.5,26.79,70,66,0 +1,47,0,0,0,0,219,132,91,27.93,75,80,1 +1,49,1,3,0,0,219,130,82,24.35,60,65,0 +0,58,0,0,0,0,326,120,70,24.69,63,68,0 +1,54,1,20,0,0,255,142,93,22.17,75,118,1 +0,47,1,10,0,0,191,125,72.5,23.81,75,85,0 +0,60,1,5,0,0,239,164,94.5,25.01,92,89,1 +1,53,0,0,0,0,292,112.5,82.5,25.04,67,82,0 +1,66,0,0,0,0,233,108,66,25.16,75,72,0 +0,35,0,0,0,0,254,95,57,24.55,61,NA,0 +1,59,0,0,0,0,237,153.5,85,28.45,51,NA,1 +1,36,0,0,0,0,237,142,82,27.5,53,87,1 +1,37,1,15,0,0,231,135,79,28.46,73,67,0 +1,49,1,5,0,0,260,111,70,24.24,75,87,0 +1,44,1,20,0,0,225,128,82,26.79,82,85,0 +1,41,0,0,0,0,210,124,79,25.26,85,91,0 +0,43,1,20,0,0,276,127.5,85,25.09,85,74,0 +1,37,0,0,0,0,205,129,86,27.27,60,76,0 +0,55,0,0,0,0,305,168,82,26.45,72,78,1 +0,62,1,30,0,0,NA,153,60,27.47,60,NA,0 +0,36,1,15,0,0,178,102.5,65,20.87,75,94,0 +0,37,1,10,0,0,217,110,78.5,32.26,110,84,0 +0,47,1,20,0,0,328,134,87,22.34,92,99,0 +1,50,0,0,0,0,232,127.5,85,25.09,75,79,0 +1,68,1,10,0,0,261,122,70,26.37,96,60,0 +1,44,1,30,0,0,217,126,85,28.49,65,68,0 +0,53,0,0,0,0,240,133.5,82.5,40.58,70,NA,0 +0,42,0,0,0,0,197,105,84,25.75,70,67,0 +0,50,0,0,0,0,173,147,90,24.06,63,85,1 +1,35,1,40,0,0,265,167.5,104.5,26.59,102,NA,1 +0,53,0,0,0,1,248,200,140,43.3,107,130,1 +0,59,0,0,0,0,NA,153.5,89.5,26.08,71,113,1 +1,57,1,20,0,0,205,127,75,20.55,80,65,0 +0,47,1,6,0,0,234,128,91,25.59,80,93,0 +1,49,1,30,0,0,240,137,96.5,23.38,75,118,1 +1,58,0,0,0,0,266,138,83,30.64,95,100,0 +0,55,0,0,0,0,244,133,80,25.01,75,70,0 +0,59,0,0,0,0,241,120,73,23.76,60,88,0 +1,55,0,0,0,0,207,122,82,24.15,77,74,0 +0,43,0,0,0,0,214,121.5,78,26.11,90,82,0 +0,46,0,0,0,0,225,116,79,29.21,60,70,0 +1,43,0,0,0,0,214,132,84,26.77,65,102,1 +0,46,0,0,0,0,304,131.5,78.5,21.02,68,112,0 +1,49,1,30,0,0,238,118,66,26.91,90,82,0 +0,42,0,0,0,0,241,118.5,80.5,32.36,95,75,0 +0,61,0,0,0,0,255,114,70.5,24.79,83,107,0 +0,36,0,0,0,0,212,102,69,33.36,55,71,0 +1,39,1,40,0,0,207,131,82,24.25,73,83,0 +0,48,0,0,0,0,222,119,85,30.46,77,80,0 +1,39,0,0,0,0,220,107,76.5,22.45,66,78,0 +0,59,1,3,0,0,240,122.5,67.5,25.4,88,81,0 +0,48,0,0,0,0,231,131,80,21.14,70,85,0 +1,44,0,0,0,0,268,114,83,31.16,75,76,0 +1,42,1,30,0,0,256,111,62,21.67,74,74,0 +0,44,0,0,0,0,195,118,86,23.09,70,75,0 +0,52,0,0,0,0,247,146,88,27.26,69,63,1 +1,60,1,9,0,0,166,141,81,19.42,67,101,0 +0,35,0,0,0,0,248,107,73,20.64,90,80,0 +1,40,1,30,0,0,165,128,83,24.71,69,60,0 +0,64,1,15,0,0,283,163,85,21.17,72,68,1 +0,53,1,10,0,0,261,136,99,21.02,85,94,1 +0,59,0,0,1,0,264,244,124,19.61,76,120,1 +0,55,0,0,0,0,273,134,92,32.17,75,67,0 +0,58,1,30,0,0,234,113,77,20.68,72,67,0 +1,56,1,30,0,0,197,113.5,74,21.03,90,81,0 +0,40,1,30,0,0,202,104,76,19.93,70,62,0 +1,42,0,0,0,0,163,135,82,25.75,65,77,0 +1,48,0,0,0,0,247,131,79,22.12,78,83,0 +0,58,1,3,0,0,NA,120,80,29.25,78,75,0 +0,38,1,15,0,0,215,129.5,85.5,24.24,75,NA,0 +1,65,0,0,0,0,251,127.5,75,26.46,60,74,0 +1,52,0,0,0,0,205,122,73,22.73,70,85,0 +1,39,1,30,0,0,225,128,86.5,25.13,74,100,0 +0,55,0,0,0,0,250,127.5,83.5,30.61,72,73,0 +0,64,0,0,0,0,255,153,75,23.39,60,74,1 +1,51,1,20,0,0,239,168,102,30.38,82,68,1 +1,49,0,0,0,0,264,127.5,81,25.16,76,70,0 +1,53,1,5,0,0,232,134,91,25.13,54,75,1 +0,47,0,0,0,0,232,113.5,73,28.78,75,77,0 +1,52,1,20,0,0,225,156,98,30.93,80,100,1 +0,62,0,0,0,0,174,166,89,31.44,83,NA,1 +0,50,1,20,0,0,221,112,69,24.07,80,79,0 +1,58,1,9,0,0,242,164,85.5,18.84,76,106,1 +0,64,0,0,0,0,194,176,97,33.19,68,89,1 +1,37,0,0,0,0,238,121,80,28.95,70,67,0 +1,57,1,10,0,0,206,141,83,27.98,63,69,1 +1,64,0,0,0,0,273,123,73.5,22.3,75,84,0 +0,66,0,0,1,0,290,152.5,90,23.63,80,76,1 +1,35,0,0,0,0,290,108,72,22.91,55,84,0 +1,38,1,15,0,0,180,111,61,21.51,66,75,0 +0,39,1,20,0,0,233,126,85,22.89,80,87,0 +0,42,1,20,0,0,199,141,92,43.69,80,60,1 +1,45,1,20,0,0,255,130,82.5,28.56,82,94,0 +0,59,0,0,0,0,249,139,79.5,23.28,94,NA,0 +0,57,1,20,0,0,200,108,77,18.55,70,87,0 +0,62,1,6,0,0,244,168,102,26.39,76,105,1 +1,58,1,20,0,0,255,146,89,27.47,75,73,1 +0,51,0,0,0,0,257,128,77,24.94,68,88,0 +1,59,1,11,0,0,176,134.5,87,31.76,80,93,0 +0,44,1,1,0,0,217,124.5,82,22.36,87,68,0 +0,60,0,0,0,1,282,213,94.5,28.58,71,78,1 +0,54,0,0,0,0,318,115,81,25.84,95,76,0 +1,38,1,20,0,0,309,148,109,30.85,95,NA,1 +1,53,0,0,0,0,220,127,76,24.27,75,74,0 +0,43,1,20,0,0,201,129,92,24.54,88,63,0 +1,64,1,40,0,0,206,126,82,24.35,95,97,0 +0,61,0,0,0,0,259,167.5,91.5,29.53,108,85,1 +1,39,0,0,0,0,224,108,66,28.57,90,97,0 +0,35,1,5,0,0,154,125,75,23.1,110,75,0 +0,66,0,0,0,0,273,153,94,25.27,80,76,1 +0,53,0,0,0,0,303,117,71,22.01,108,85,0 +1,40,1,20,0,0,229,152,103,32.73,85,72,1 +0,46,1,40,0,0,253,118,74,26.42,75,64,0 +1,47,1,25,0,0,236,154,93,24.49,94,76,1 +1,64,0,0,0,0,205,140,80,32.52,58,NA,1 +1,49,0,0,0,0,152,120,90,23.03,77,93,1 +0,42,1,10,0,0,194,111,67.5,21.34,73,47,0 +0,60,1,15,0,0,353,116,82,22.66,85,71,0 +0,56,0,0,0,0,298,115,80,31.11,75,77,0 +0,48,0,0,0,0,224,131,92,26.13,68,NA,0 +1,39,1,30,0,0,253,159,115,32.66,110,74,1 +0,62,0,0,0,0,318,206,98,27.23,84,87,1 +0,45,1,20,0,0,196,123,71,20.56,80,76,0 +1,61,1,20,0,0,360,157,99,28.74,95,73,1 +1,55,1,25,0,0,230,142,74,23.65,72,82,1 +1,58,1,5,0,0,243,106,70.5,23.72,60,80,0 +0,53,1,5,0,0,247,139,88,23.71,60,53,0 +0,37,1,20,0,0,229,111,70,20.24,80,70,0 +1,36,1,20,0,0,280,151,96,25.35,78,94,1 +0,60,0,0,0,0,335,199,83,24.61,80,90,1 +0,53,0,0,0,0,219,184,109,22.73,80,73,1 +1,62,1,20,0,0,168,129.5,87,20.56,65,80,0 +0,59,0,0,0,0,250,127.5,80,29.16,92,108,0 +1,44,1,40,0,0,262,147,103,25.38,68,NA,1 +1,43,0,0,0,0,260,129,90,25.29,70,62,1 +0,47,1,2,0,0,232,133,86,20.15,72,74,0 +0,40,0,0,0,0,240,108,72,17.64,78,NA,0 +0,53,0,0,0,0,284,167.5,102.5,31.5,88,87,1 +0,47,1,40,0,0,247,160,85,27.05,75,77,1 +0,51,1,30,0,0,295,176,99,26.27,82,NA,1 +1,48,1,9,0,0,203,117.5,92,27.75,80,115,1 +1,48,1,30,0,0,150,127.5,75,26.6,75,112,0 +0,43,0,0,0,0,202,115.5,68,23.33,76,73,0 +0,47,1,20,0,0,215,128,85,20.89,75,90,0 +0,43,0,0,0,0,229,118,77,25.32,78,103,0 +1,56,1,20,0,0,285,198,107,24.87,80,97,1 +0,34,1,20,0,0,220,117.5,67.5,20.79,63,86,0 +0,47,0,0,0,0,274,127,86,21.93,90,83,0 +0,49,1,15,0,0,NA,108,76,19.25,85,102,0 +1,66,1,30,0,1,234,114.5,62.5,28.62,75,216,0 +0,39,1,5,0,0,170,137.5,77.5,27.35,67,70,0 +0,58,0,0,0,0,268,151,98,20.34,72,60,1 +1,57,1,20,0,0,257,158.5,107,27.1,66,67,1 +0,63,0,0,0,0,252,118,84,25.31,98,82,0 +0,53,0,0,0,0,285,160,97,31.31,75,65,1 +1,38,0,0,0,0,209,137,82.5,26.69,62,84,0 +1,57,1,20,0,0,262,131.5,92,28.3,70,78,1 +0,49,0,0,0,0,261,123.5,84,20.94,75,75,0 +0,47,0,0,0,0,202,140,82,22.88,75,95,1 +0,36,1,1,0,0,160,98,66,25.07,68,73,0 +0,42,1,9,0,0,218,109.5,67,23.48,65,71,0 +0,39,1,15,0,0,284,115.5,65.5,20.39,64,78,0 +1,52,1,20,0,0,265,106,79,26.48,80,163,0 +1,64,0,0,0,0,239,110,70,23.98,65,83,0 +0,61,0,0,0,0,210,122,81,22.48,68,97,0 +0,54,0,0,0,0,266,137,88,29.76,80,80,1 +0,61,0,0,0,0,256,160,109,42.53,81,79,1 +1,52,1,3,0,0,199,134,98,27.78,75,89,1 +0,38,0,0,0,0,171,125.5,86,26.57,75,71,0 +0,51,1,30,0,0,272,133,91,28.5,72,NA,0 +0,37,1,10,0,0,205,120.5,67.5,22.89,75,113,0 +1,52,1,15,0,0,225,131,74,24.54,65,77,0 +1,50,1,20,0,0,272,159,109,31.27,80,68,1 +1,60,1,20,1,0,269,170,100,29.59,60,83,1 +1,39,0,0,0,0,160,124,90,26.82,50,67,0 +1,57,1,20,0,0,158,154,100,24.07,92,70,1 +0,64,0,0,0,0,239,132,75,20.67,86,80,1 +0,55,1,10,0,0,196,115,71,22.19,105,85,0 +0,45,1,2,0,0,258,111,72,26.24,70,65,0 +0,67,0,0,0,0,201,110,77,24.53,65,77,0 +0,40,0,0,0,0,340,149,81,28.46,110,99,0 +0,48,1,5,0,0,192,135,82.5,32.67,67,69,0 +0,53,1,10,0,0,300,127,89,25.46,75,70,0 +0,50,1,10,0,0,177,121,67,22.02,71,77,0 +1,47,0,0,0,0,194,115,82,28.23,48,76,0 +1,42,0,0,0,0,266,139,88,23.61,75,78,0 +1,53,0,0,0,0,287,122,80,26.26,77,85,1 +1,39,0,0,0,0,247,113,80,28.59,80,82,0 +1,39,1,30,0,0,199,124,86,23.39,76,72,0 +0,64,0,0,0,0,205,139,92,32.32,70,90,1 +0,61,1,1,0,0,310,118,77.5,24.03,90,70,0 +0,46,0,0,0,0,270,122,76,21.35,77,88,0 +1,47,1,9,0,0,201,122,67,20.12,68,NA,0 +1,49,1,30,0,0,199,107.5,71,26.62,70,68,0 +0,55,0,0,0,0,255,125,85,22.89,65,81,0 +0,57,0,0,NA,0,372,122,80,21.02,65,81,0 +0,37,0,0,0,0,159,112,69,26.98,86,NA,0 +0,41,0,0,0,0,168,102,64,23.64,60,75,0 +1,46,0,0,0,0,216,124,85,29.91,100,103,0 +1,60,0,0,NA,0,191,167,105,23.01,80,85,1 +0,64,0,0,0,0,263,206,104,26.15,70,91,1 +0,43,0,0,0,0,175,117,67,22.36,58,70,0 +1,50,0,0,0,0,240,145,94,28.86,60,68,0 +0,38,0,0,0,0,220,107,73.5,23.09,61,80,0 +0,56,0,0,0,0,310,142,94,31.1,83,65,0 +1,53,1,20,0,0,186,167,96.5,25.09,112,113,1 +0,51,1,1,0,0,220,142,82.5,21.02,56,78,0 +1,42,1,30,0,0,232,111.5,70,28.3,90,80,0 +1,58,1,1,0,0,240,148,81,25.67,90,78,0 +0,54,1,20,0,0,187,133,88,31.82,75,77,0 +1,53,0,0,0,0,213,100,71,23.85,77,75,0 +1,58,0,0,0,0,210,132,86,28.92,94,74,0 +1,60,1,5,0,0,267,139,84,28.76,75,112,0 +1,62,0,0,0,0,332,119.5,74,28.5,68,92,0 +1,59,0,0,0,0,236,127,83,26.53,57,86,0 +0,53,0,0,0,0,232,147,71.5,25.45,85,74,1 +0,42,1,10,0,0,242,100,66,21.85,75,NA,0 +1,35,0,0,0,0,242,136.5,95,24.43,75,88,0 +0,50,0,0,0,0,224,149,90,29.94,100,85,1 +1,36,0,0,0,0,167,155,74,19.42,125,81,1 +0,57,0,0,0,0,277,133,84,36.21,62,74,0 +1,34,0,0,0,0,227,131.5,84,25.41,60,87,0 +1,46,0,0,0,0,217,117.5,77.5,32.4,55,83,0 +1,42,1,5,0,0,200,131,88,25.09,81,88,0 +1,63,1,10,0,0,271,131,73.5,30.12,72,107,0 +0,65,0,0,0,0,217,140,82,20.5,58,NA,0 +0,46,0,0,0,0,197,105.5,67,23.14,60,69,0 +1,45,1,20,0,1,279,138,86,30.63,80,144,0 +0,60,0,0,0,0,236,126,84,20.34,71,76,0 +1,45,1,3,0,0,218,145,90,26.65,76,70,1 +0,44,0,0,0,0,187,122,83,30.4,85,75,1 +1,39,1,20,0,0,222,141.5,91,27.06,63,73,1 +0,42,0,0,0,0,183,111,71,19.78,66,81,0 +0,62,1,20,0,0,264,142,90,31.78,95,97,0 +1,48,0,0,0,0,270,131,88,27.13,63,55,0 +0,55,0,0,0,0,269,112.5,72.5,23.45,60,80,0 +1,45,1,20,0,0,207,117,80,20.17,75,59,0 +1,58,1,20,0,0,192,143,98,29.01,90,68,1 +0,56,1,9,1,0,285,165,115,24.25,72,116,1 +0,55,0,0,0,0,250,161.5,95,27.76,67,83,1 +1,57,1,30,0,0,211,122,66.5,20.19,62,57,0 +0,65,0,0,NA,0,290,144,64,21.41,58,145,1 +1,61,0,0,0,0,201,164.5,93.5,27.73,78,95,1 +0,49,1,NA,0,0,280,120,80,22.33,90,75,0 +1,42,0,0,0,0,164,141.5,98,32.52,72,76,1 +1,50,0,0,0,0,220,124,82,24.54,54,83,0 +1,42,1,20,0,0,270,112,77,24.77,73,85,0 +1,46,1,9,0,0,346,137,97,29.11,75,82,1 +1,53,1,20,0,0,266,163,105,28.04,90,79,1 +1,44,0,0,0,0,169,116,62,19.44,53,87,0 +0,54,0,0,0,0,237,171.5,105.5,34.25,91,104,1 +1,58,1,60,0,0,250,150,97,32,75,65,1 +1,67,1,9,0,0,245,126,68,29.04,70,94,0 +1,44,0,0,0,0,271,132.5,90,24.06,94,95,0 +1,41,1,30,0,0,176,146,88,24.04,78,83,1 +0,52,0,0,0,0,240,177,103.5,24.39,86,75,1 +0,40,0,0,0,0,187,105,74,23.26,80,69,0 +0,55,1,3,0,0,252,108.5,63.5,25.23,80,121,0 +0,41,1,3,0,0,140,110,60,23.38,65,82,0 +1,40,0,0,0,0,185,102,72,24.08,63,83,0 +0,37,0,0,0,0,169,117.5,77.5,28.44,90,NA,0 +1,48,0,0,0,0,287,141.5,82,27.88,84,NA,0 +1,41,0,0,0,0,324,129.5,92.5,34.99,79,103,0 +0,48,0,0,0,0,273,132,85,26.03,70,78,0 +0,52,0,0,0,0,245,131,80,32.04,80,81,0 +1,53,1,10,0,1,229,146.5,82,27.8,60,172,1 +1,52,0,0,0,0,200,114,77,28.28,66,84,0 +0,45,1,20,0,0,215,107,75,22.14,79,105,0 +0,65,0,0,0,0,276,124,70,25.61,76,75,0 +0,42,1,9,0,0,165,139,91,26.54,83,83,0 +1,48,0,0,0,0,181,153,93,29.34,103,88,0 +0,45,1,5,0,0,170,109.5,69,17.38,88,66,0 +0,56,1,3,0,0,289,131,86.5,21.85,76,71,0 +0,58,0,0,0,0,190,132,67,23.08,65,70,0 +0,54,1,20,0,0,225,131,79,25.91,67,62,0 +0,56,0,0,1,0,273,125,83,24.48,65,66,1 +0,67,0,0,1,0,263,201,93,30.04,75,78,1 +1,55,1,35,0,0,290,120.5,84,25.05,80,90,0 +0,59,0,0,0,0,273,145,90,23.94,78,82,1 +0,49,1,30,0,0,265,144,86,25.57,82,68,0 +0,54,0,0,0,0,279,127,70,23.48,92,79,0 +1,45,0,0,0,0,232,122.5,82.5,27.55,74,59,0 +0,55,1,10,0,0,346,131,81,22.69,75,77,0 +0,46,0,0,0,0,253,118,79,26.61,85,83,0 +0,40,1,10,0,0,216,112.5,76.5,27.22,75,77,0 +1,44,1,4,0,0,220,135,91,27.23,70,88,1 +0,40,1,9,0,0,239,118,78,23.48,85,75,0 +0,37,0,0,0,0,261,123,75,26.72,90,85,0 +1,47,1,30,0,0,210,112,66,24.58,70,84,0 +1,47,1,15,0,0,253,137,87,24.5,80,81,0 +1,43,1,40,0,0,263,114,81,25.68,70,74,0 +0,53,0,0,0,0,265,137,76,25.46,85,84,0 +1,51,1,20,0,0,219,125,71,21.19,77,75,0 +0,52,1,10,0,0,246,113.5,66.5,19.47,85,60,0 +1,52,0,0,0,0,200,113,76.5,27.22,72,73,0 +1,50,0,0,0,0,220,114,78,26.26,79,83,0 +0,37,1,5,0,0,279,110,72.5,24.89,67,70,0 +0,50,0,0,0,0,274,125,87,21.67,75,73,0 +0,38,0,0,0,0,174,101,68,27.47,85,NA,0 +1,43,1,9,0,0,229,131,87,23.31,80,74,0 +0,60,1,20,0,0,352,149,73,25.96,80,79,1 +1,57,0,0,NA,0,195,162,108,32.65,85,73,1 +0,35,0,0,0,0,NA,127.5,80,23.08,95,85,0 +1,53,1,9,0,0,230,137,99,25.77,83,79,1 +0,42,1,20,0,0,209,105,65,23.8,69,64,0 +1,61,0,0,0,0,227,130,77.5,26.18,63,91,0 +0,40,0,0,0,0,159,145,90,20.33,82,83,1 +0,59,0,0,1,0,201,148.5,90,25.85,65,83,1 +0,52,0,0,0,1,600,159.5,94,28.27,78,140,1 +0,63,0,0,0,0,241,143.5,89,26.45,69,80,0 +0,66,0,0,0,0,238,140,80,26.69,69,83,1 +1,53,1,43,0,0,220,119,75,26.28,82,67,0 +1,42,1,30,0,0,240,169,96,32.4,90,NA,1 +0,39,1,1,0,0,175,105.5,64.5,25.83,72,72,0 +1,58,1,15,0,0,272,127.5,79.5,26.37,78,66,0 +0,55,0,0,0,0,230,113,82,24.99,68,NA,0 +1,65,1,20,0,0,285,140,82.5,21.24,98,NA,1 +0,56,0,0,0,0,267,114,71,24.81,78,90,0 +1,54,1,9,0,0,241,101,72,28.35,69,70,0 +0,67,1,6,NA,0,NA,120,67,32.77,86,NA,0 +1,64,0,0,0,1,251,133,72.5,24.28,65,86,0 +0,44,0,0,0,0,210,138,92,23.13,70,92,0 +0,46,0,0,0,0,259,173,102,27.22,85,75,1 +1,40,1,30,0,0,202,112.5,64.5,22.85,69,103,0 +0,42,1,10,0,0,253,109,74,24.38,88,60,0 +0,63,1,10,0,0,236,189,103,27.91,60,74,1 +0,47,0,0,0,0,279,154.5,103.5,27.12,79,60,0 +0,61,0,0,0,0,292,141.5,88.5,23.95,86,70,1 +0,52,0,0,0,0,215,159,64,24.56,58,124,1 +0,51,0,0,0,0,206,146,77,23.58,87,90,1 +0,64,0,0,0,0,293,140,84,34.56,83,76,1 +0,64,0,0,0,0,262,122,87.5,24.77,95,85,0 +1,40,1,30,0,0,282,130,80,23.9,66,68,1 +0,44,1,30,0,0,245,125,80.5,24.58,64,80,0 +0,45,1,20,0,0,192,132,79,24.53,68,112,0 +1,59,1,20,0,0,190,93.5,69,27.25,68,74,0 +1,44,1,35,0,0,217,144,99,25.16,68,60,1 +1,50,1,30,0,0,249,133,88,28.5,75,75,0 +1,56,0,0,0,0,256,147,96,30.42,72,75,1 +0,53,0,0,0,0,218,125,80,24.96,72,NA,0 +0,63,0,0,0,0,315,156,90,25.92,64,74,1 +0,57,0,0,0,0,224,174,112,22.73,63,82,1 +0,64,0,0,0,0,196,150,84,25.98,60,93,1 +1,57,1,30,0,0,225,140,88,24.71,80,78,0 +1,55,1,25,0,0,270,129,82,27.63,88,60,0 +0,55,0,0,0,0,265,130,84,29.66,76,69,0 +1,41,1,30,0,0,193,100,60,29.69,60,69,0 +0,46,1,10,0,0,392,113,68,23.35,70,63,0 +0,38,0,0,0,0,239,128,84.5,33.49,75,80,0 +0,56,0,0,0,0,261,145,77,26.67,73,95,0 +0,67,1,1,0,0,242,172,84,19.81,70,111,1 +0,45,0,0,0,0,222,167,107,25.56,82,88,1 +0,64,1,3,0,0,221,148,85,NA,90,80,0 +0,50,1,20,0,0,242,116,69,21.65,75,73,0 +0,41,0,0,0,0,257,122,73,24.17,96,104,0 +0,46,1,5,0,0,291,107.5,65,24.1,82,78,0 +0,60,0,0,0,0,229,144,91,24.96,70,82,0 +0,41,1,3,0,0,223,119,73,24.22,72,77,0 +0,47,0,0,0,0,195,126,75,NA,60,NA,0 +1,61,0,0,0,0,214,100,65,30.18,60,66,0 +1,68,0,0,0,0,239,130,80,23.25,64,95,0 +0,45,0,0,0,0,250,116,79,28.59,93,87,0 +0,52,1,20,0,1,334,147,86,29.01,80,63,1 +1,56,0,0,0,0,322,140,90,29.47,58,64,1 +0,53,0,0,0,0,291,114,81,26.21,70,79,0 +0,51,0,0,0,0,214,153.5,103.5,23.45,70,71,1 +1,47,1,20,0,0,200,126,86,26.84,80,96,0 +1,67,0,0,0,0,256,138,76,22.81,65,100,1 +1,49,0,0,0,0,221,175,107.5,25.97,63,78,1 +0,53,0,0,0,0,245,102,68,23.01,60,NA,0 +0,36,0,0,0,0,185,123,69,18.98,79,75,0 +0,62,0,0,0,0,304,165,91,26.97,80,81,1 +0,58,0,0,0,0,246,132.5,82,19.09,59,NA,0 +1,36,1,20,0,0,248,135,94.5,36.52,65,85,1 +0,55,0,0,NA,0,325,155,90,26.27,68,72,1 +1,45,1,15,0,0,221,131,84,28.58,85,72,0 +1,44,1,4,0,0,196,107,73,24.36,60,71,0 +0,47,0,0,0,0,242,145,87.5,22.01,58,73,0 +1,54,1,15,0,0,300,128,80,27.3,68,NA,0 +1,38,1,43,0,0,170,130,94,23.9,110,75,1 +0,57,0,0,0,0,233,184,106,38.88,66,40,1 +0,64,1,3,0,0,315,135,80,25.23,103,89,0 +1,46,0,0,0,0,205,118,76.5,23.48,75,77,0 +1,49,0,0,0,0,267,160.5,109,28.33,70,75,1 +1,50,1,20,0,0,261,114,64,22.32,85,71,0 +0,63,0,0,0,0,306,177,96,32.51,90,126,1 +0,48,0,0,0,0,169,243,142.5,28.49,85,77,1 +0,58,1,15,0,0,222,117,79,21.09,92,NA,0 +1,60,1,20,0,0,260,178,103,24.62,72,79,1 +0,41,1,15,0,0,242,139,80,19.68,72,60,0 +0,64,0,0,0,0,280,127,77,30.39,56,78,0 +0,62,0,0,0,0,231,184,90,26.03,70,75,1 +1,62,1,20,0,0,270,145.5,87.5,23.88,81,67,1 +0,66,1,3,0,0,216,133,87,30.06,68,91,0 +0,59,0,0,1,0,320,187.5,85.5,25.33,75,68,1 +0,36,1,10,0,0,214,119,76,21.67,67,75,0 +1,40,1,10,0,0,304,125,86,30.07,80,84,0 +1,53,1,20,0,0,248,165,96,24.45,100,71,1 +0,49,0,0,0,0,246,138,92,28.23,72,91,0 +0,47,1,20,0,0,195,134,81,21.4,85,NA,0 +1,64,1,30,0,0,253,178,106,24.68,100,76,1 +1,46,0,0,0,0,256,138,105,26.97,98,100,1 +0,58,0,0,0,0,245,123,85.5,24.49,68,76,0 +0,66,0,0,NA,0,235,151,91,30.86,78,87,1 +0,41,0,0,0,0,205,110,69,25.99,75,67,0 +0,40,1,15,0,0,199,122,82,22.16,85,77,0 +0,42,1,20,0,0,304,119,76,32.52,64,80,0 +1,52,0,0,0,0,206,110,78,33.03,65,62,0 +1,42,0,0,0,0,245,142.5,85,35.45,62,NA,1 +0,49,0,0,0,0,309,155,85,23.06,70,63,1 +0,52,1,1,0,0,234,111,81,22.35,70,77,0 +0,58,0,0,0,0,218,138.5,87.5,22.91,73,NA,0 +1,46,0,0,0,0,305,150,88,26.82,75,75,1 +0,40,0,0,0,0,208,116,75,18.52,80,82,0 +1,35,1,15,0,0,210,99,67,22.39,57,75,0 +0,42,0,0,0,0,271,115,77,28.68,66,82,0 +1,58,0,0,0,0,264,181,90,24.49,75,71,1 +0,43,0,0,0,0,209,115,75,27.99,80,90,0 +1,44,0,0,0,0,248,174,110,31.74,75,100,1 +0,38,1,10,0,0,155,96,61,24.19,60,68,0 +0,39,1,20,0,0,149,122,72,21.3,85,75,0 +1,41,0,0,0,0,255,120.5,85.5,30.85,100,79,0 +1,40,0,0,0,0,137,127,82,27.04,60,71,0 +0,38,1,9,0,0,160,102.5,67.5,21.16,90,68,0 +1,57,0,0,0,0,210,158,104,30.93,73,113,1 +0,41,1,3,0,0,226,130,80,25.25,75,73,0 +0,42,1,15,0,0,197,124,81,21.5,80,63,0 +1,58,1,30,0,0,279,180,109.5,26.04,75,82,1 +1,42,0,0,0,0,195,112,74.5,23.37,58,110,0 +0,47,1,3,0,0,231,133.5,76,25.77,75,73,0 +1,59,0,0,0,0,229,100.5,66,25.18,44,81,0 +0,45,0,0,0,0,186,104.5,71,31.35,55,NA,0 +1,55,1,20,0,0,242,120,86,26.77,55,73,0 +1,68,0,0,0,0,230,124,70,22.85,70,60,0 +1,61,1,20,0,0,183,156,92,24.69,75,79,1 +0,36,0,0,0,1,208,156.5,105,33.82,95,186,0 +1,41,0,0,0,0,190,124,83,27.02,75,87,0 +0,45,1,9,0,0,261,140,88,21.44,70,78,1 +1,51,1,20,0,0,246,128,69,27.57,80,72,1 +1,45,0,0,0,0,172,119,84,28.25,58,98,0 +0,35,0,0,0,0,216,130,68,25.94,75,90,0 +0,49,0,0,0,0,222,118,78,21.18,70,73,0 +0,50,1,10,0,0,298,156,90,24.24,75,100,1 +1,40,0,0,0,0,208,148,100,32.84,85,102,0 +0,43,1,2,0,0,213,113,77,29.34,100,73,0 +0,49,1,9,0,0,266,159,88,20.66,76,84,1 +1,47,1,15,0,0,220,127,93,30.7,82,57,1 +0,45,0,0,0,0,244,112.5,77.5,25.97,75,NA,0 +0,58,0,0,0,0,210,143,101,31.34,85,80,1 +1,38,0,0,0,0,252,125,92,24.72,60,69,1 +1,50,0,0,0,0,200,126,88,26.73,80,76,0 +0,47,1,15,0,0,285,122,70,23.48,83,82,0 +1,60,0,0,0,0,175,129,89,22.16,65,75,0 +0,45,0,0,0,0,225,108.5,71.5,25.74,72,80,0 +1,58,1,20,0,0,213,162,99,28.3,60,70,1 +1,63,0,0,0,0,252,135.5,80,28.78,60,79,0 +0,43,0,0,0,0,204,132,88,28.59,80,83,0 +1,52,0,0,0,0,318,144,85,27.66,78,64,1 +0,47,0,0,0,0,230,123,71,26.98,83,73,0 +0,46,1,20,1,0,248,128,76,28.87,80,77,1 +0,49,0,0,0,0,270,126.5,67.5,26.56,70,77,0 +1,36,0,0,0,0,245,131.5,89,26.33,100,62,0 +1,58,1,13,0,0,196,120,74,20.12,75,73,0 +1,58,0,0,0,0,220,143,104,29.85,75,87,0 +0,46,0,0,0,0,190,128,74,23.01,95,78,0 +1,61,0,0,0,1,218,160,96,28.89,75,223,0 +0,59,1,9,0,0,184,122,74,24.66,78,67,0 +0,40,0,0,0,0,205,97,63,26.56,83,80,0 +0,54,0,0,0,0,272,146,95,23.66,72,80,0 +0,56,0,0,0,0,186,155,102,24.38,81,75,1 +1,45,0,0,0,0,218,128,90,32.15,80,77,1 +0,51,0,0,0,0,234,114,85,28.68,72,84,0 +0,53,1,3,0,0,268,136.5,94.5,25.51,100,NA,1 +0,59,1,20,0,0,270,175,95,29.69,95,76,1 +1,40,1,30,0,0,154,125,94,29.29,73,84,1 +1,53,1,30,0,0,253,121,85.5,28.52,80,68,0 +1,64,1,20,0,0,214,116,77,22.48,72,71,0 +1,48,1,40,0,0,226,117.5,80,26.18,60,66,0 +0,41,0,0,0,0,187,108,64,23.63,72,70,0 +1,43,0,0,0,0,241,132.5,87.5,32.02,63,83,0 +1,56,1,15,0,0,195,108,70,22.92,75,117,0 +1,41,1,15,NA,0,198,114.5,80,22.53,72,75,0 +0,40,0,0,0,0,233,108.5,75,28.3,60,73,0 +0,65,0,0,0,0,220,185.5,97.5,38.38,72,95,1 +0,45,0,0,0,0,218,110,70,20.24,80,78,0 +0,53,0,0,0,0,225,125,76,30.24,86,75,0 +0,60,0,0,0,0,238,140,85,28.41,80,88,0 +0,40,1,15,0,0,244,110,73,21.84,88,67,0 +0,55,1,3,0,0,222,103,61,23.18,68,75,0 +1,42,1,NA,0,0,225,122.5,80,25.54,90,90,0 +1,47,0,0,0,0,197,115,81,22.41,50,66,0 +0,50,0,0,0,0,240,163,105,31.37,89,75,1 +0,45,1,15,0,0,222,95,58,21.68,75,77,0 +1,39,1,20,0,0,310,134,90,35.11,69,88,0 +0,55,1,20,0,0,250,138,87,25.33,95,NA,0 +1,40,0,0,0,0,175,173,59,27.99,70,75,1 +1,52,1,30,0,0,312,148,99,26.73,75,65,1 +1,50,0,0,0,0,253,131,87,26.54,90,76,0 +0,43,1,10,NA,0,186,111,82,23.22,75,82,0 +0,63,0,0,0,0,226,172.5,98,26.47,87,81,1 +1,55,0,0,0,1,180,174,100,26.83,71,78,1 +1,46,1,43,0,0,259,125,89,24.8,100,57,1 +1,62,0,0,0,0,216,126,82,21.18,69,69,0 +1,41,1,20,0,0,260,120,72.5,26.36,73,88,0 +1,38,1,15,0,0,233,137,75,20.55,100,107,0 +1,59,1,20,0,0,280,164,81,29.76,80,68,1 +0,34,0,0,0,0,170,121,74,20.82,67,83,0 +1,50,1,15,0,0,212,132,87,25.9,75,83,0 +1,59,1,20,0,0,206,115,70,24.79,84,76,0 +1,44,1,30,0,0,230,128,87,26.02,70,73,1 +0,33,0,0,0,0,158,108,67,19.84,86,69,0 +1,64,0,0,0,0,186,144,76,31.23,62,93,1 +1,60,0,0,0,0,183,114,70,23.56,75,59,0 +0,55,0,0,0,0,211,136,70,34.4,75,83,0 +0,52,0,0,0,0,NA,129,80,28.06,90,NA,0 +1,50,1,40,0,0,238,127.5,85,27.82,80,69,0 +0,35,1,5,0,0,186,106,78,24.73,60,70,0 +0,57,0,0,0,0,239,127,81,21.85,75,87,0 +0,60,0,0,0,0,277,126,70,25.13,60,100,0 +0,53,1,20,0,0,235,154,98,26.91,80,65,1 +1,43,1,38,0,0,207,130,86,24.96,75,103,0 +1,56,1,20,0,0,256,124,78,26.67,60,80,0 +0,36,0,0,0,0,230,112.5,73.5,22.36,63,65,0 +1,38,0,0,0,0,199,135,90,32.19,67,85,1 +0,59,1,1,0,0,236,139,84,22.7,63,NA,0 +1,49,0,0,0,0,271,140,108,27.66,82,77,1 +0,49,0,0,0,0,250,133.5,87.5,29.45,83,84,0 +0,42,1,5,0,0,152,122,76,21.26,85,78,0 +1,35,1,10,0,0,300,120,84,24.69,75,99,0 +0,38,0,0,0,0,287,113,80,24.56,100,75,0 +1,62,0,0,0,1,237,114,72,25.65,62,89,0 +1,44,1,20,0,0,214,128,94,23.51,72,66,0 +0,43,0,0,0,0,237,130,80,22.71,65,NA,0 +0,39,0,0,0,0,201,151,94,31.48,80,74,0 +0,39,0,0,0,0,180,124,83,22.91,66,77,0 +0,46,0,0,0,0,248,115,82,28.92,93,100,0 +1,52,1,15,0,0,240,120,77,32.27,80,62,0 +0,48,1,25,0,1,304,102,66.5,28.9,100,66,0 +1,52,1,25,0,0,271,121,73,21.85,70,86,0 +1,57,1,20,0,0,250,127.5,80,29.38,80,80,0 +0,44,1,25,0,0,200,111,79,27.29,95,74,0 +0,57,1,5,0,0,272,112.5,70,23.08,73,58,0 +0,49,0,0,0,0,211,103.5,66.5,24.17,75,87,0 +0,42,0,0,0,0,230,142.5,97.5,29.94,75,75,1 +0,58,1,NA,0,0,270,195,117.5,23.35,75,NA,1 +1,42,0,0,0,0,225,110,73,27.67,65,65,0 +1,64,1,30,0,0,185,114,73,34.53,75,97,0 +0,49,1,10,0,0,260,123,80,23.1,63,65,0 +0,59,0,0,0,0,292,114,84,27.39,68,72,0 +1,37,1,30,0,0,246,124,83,30.93,60,85,0 +1,33,0,0,0,0,165,141.5,95,26.74,54,77,1 +0,54,1,20,0,0,NA,111,81,25.43,70,NA,0 +1,38,0,0,0,0,198,119,73,30.27,68,70,0 +1,40,0,0,0,0,204,115,83,25.05,75,76,0 +1,66,0,0,0,0,253,163,86,24.35,70,91,1 +1,64,0,0,0,0,210,120,68,24.77,80,77,0 +0,39,0,0,0,0,NA,126,71,27.73,73,NA,0 +1,47,1,50,0,0,217,145,89,28.88,82,75,0 +1,44,1,15,0,0,232,141,104,27.38,75,NA,1 +0,39,1,20,0,0,190,137,81,19.57,80,85,0 +1,55,1,40,0,1,205,127,76,22.24,90,325,0 +0,41,1,20,0,0,235,144,88,24.16,95,82,0 +0,56,0,0,0,0,259,138,87,30.73,60,75,0 +0,65,0,0,0,0,289,149.5,78,25.37,70,86,0 +0,53,0,0,0,0,272,146,89,25.5,73,67,1 +1,55,0,0,0,0,309,126,88,26.77,68,NA,0 +0,42,0,0,0,0,249,101,70,21.74,94,60,0 +1,45,1,20,0,0,194,133,83,20.41,55,76,0 +0,55,0,0,0,0,340,140,83,26.18,75,83,1 +1,53,1,20,0,0,314,128,77,24.74,60,78,0 +1,62,1,30,0,0,226,106,67.5,23.88,60,87,0 +1,54,0,0,0,0,225,113.5,74,25.63,70,80,0 +0,61,0,0,0,0,265,123,79,26.07,81,114,0 +0,43,0,0,0,0,232,138,88,22.53,70,96,0 +0,43,0,0,1,0,234,127,88,33.17,85,NA,1 +1,49,1,20,0,0,278,135,76,29.03,82,75,0 +0,66,0,0,0,0,305,138,86,20.74,75,62,0 +1,42,1,30,0,0,224,127.5,89,29.84,79,75,0 +0,64,1,8,0,0,317,182.5,88,20.52,75,79,1 +0,43,1,20,0,0,292,109,73,22.87,90,93,0 +0,42,1,20,0,0,175,132,86,20.53,80,88,0 +1,46,0,0,0,0,295,172.5,116.5,27.18,70,77,1 +1,43,0,0,0,0,262,121,79,24.01,85,87,0 +0,53,0,0,0,0,234,126,73,27.6,75,90,0 +1,50,1,25,0,0,240,112,82,24.39,66,62,0 +0,46,1,10,0,0,251,121,81,23.05,75,84,0 +0,51,0,0,1,0,358,134,87,29.36,75,87,1 +0,67,1,20,0,0,239,154,90,28.56,72,90,1 +1,51,1,10,0,0,185,125,85,29.43,56,72,0 +0,45,1,20,0,0,217,109,72,33.65,75,68,0 +1,44,1,10,0,0,220,105,70,21.01,58,68,0 +1,47,0,0,0,0,292,123,87,21.97,80,78,0 +0,42,1,15,0,0,228,131,85,25.08,72,NA,0 +1,44,1,23,0,0,272,115,76,24.16,80,77,0 +0,48,0,0,0,0,211,149,100,30.91,78,62,1 +1,36,1,15,0,0,155,123,78,22.05,67,78,0 +1,63,1,20,0,0,252,149,90,33.49,82,83,1 +0,43,1,10,0,0,216,116,74,22.65,90,NA,0 +1,36,0,0,0,0,172,122.5,82.5,28.53,82,75,0 +0,65,0,0,0,0,244,162,98,24.5,70,82,1 +0,48,1,3,0,0,246,129,86,25.04,80,87,0 +0,63,0,0,0,0,276,144,90,21.35,70,78,1 +1,40,1,20,0,0,229,137,85,35.2,66,55,0 +0,40,0,0,0,0,204,122,94,29.86,87,82,1 +0,42,0,0,0,0,170,113,79,21.31,70,65,0 +1,43,1,20,0,0,153,130,83.5,19.84,63,NA,0 +0,63,0,0,0,0,192,143,87,23.64,75,100,0 +1,36,0,0,0,0,234,133,88,26.78,58,100,0 +0,36,0,0,0,0,295,114.5,72,24.11,85,NA,0 +0,46,1,20,0,0,161,100,64,20.66,75,60,0 +1,39,1,40,0,0,251,115,77,24.01,65,98,0 +0,39,1,15,0,0,255,142,85.5,24.89,100,108,0 +0,51,1,15,0,0,345,142,88,19.05,80,73,0 +1,48,1,30,0,0,212,139,86,20.27,66,62,0 +0,57,0,0,0,0,210,131,85,26.59,70,77,0 +1,41,1,20,0,0,245,146,86,24.5,80,72,1 +1,42,1,20,0,0,231,123,87,21.48,75,44,0 +0,38,1,5,0,0,187,118,78,30.06,64,63,0 +0,41,1,15,0,0,190,95,57,20,75,77,0 +0,43,1,15,0,0,174,158.5,100.5,35.99,82,88,1 +0,55,0,0,0,0,243,142,92,30.24,70,85,1 +0,38,1,7,0,0,160,95,65,21.99,72,77,0 +0,46,1,20,0,0,250,115,74,22.7,100,69,0 +1,45,1,23,0,0,263,115,76,24.94,68,78,0 +0,53,1,20,0,0,221,131,89,24.09,90,95,0 +1,44,1,20,0,0,271,136,90,25.24,80,64,0 +0,52,0,0,0,0,275,137,85,25.89,70,NA,0 +1,51,1,20,0,0,260,123,72,26.83,65,65,1 +1,39,0,0,0,0,213,130,72,22.32,80,78,0 +0,51,0,0,0,0,239,127.5,77.5,26.65,70,79,0 +0,55,0,0,0,0,252,130,82,29.17,78,85,0 +1,43,1,25,0,0,201,121,82,23.84,70,91,0 +0,67,0,0,0,0,261,135,80,21.8,72,93,0 +0,55,0,0,0,0,329,145,82,23.43,70,95,1 +0,39,0,0,0,0,229,125,80,24.1,75,58,0 +1,54,0,0,0,0,254,136.5,83,20.55,88,95,0 +1,41,1,30,0,0,293,115,77.5,26.26,85,57,0 +0,48,0,0,0,0,250,117,81,27.04,80,65,0 +0,45,0,0,0,0,262,116,66,21.56,66,76,0 +1,61,1,3,0,0,256,165,80,24.12,75,97,1 +1,38,1,30,0,0,239,141,98,27.8,90,85,1 +0,49,1,1,0,0,186,120,74,19.39,80,69,0 +0,47,1,2,0,0,232,110,70,25.86,76,82,0 +0,59,0,0,0,0,260,162.5,105,24.39,75,72,1 +0,60,0,0,0,0,391,114,64,24.57,82,83,0 +0,48,1,20,0,0,NA,153.5,95,26.35,100,NA,1 +1,37,1,30,0,0,275,127,80,27.22,85,93,0 +0,48,0,0,0,0,231,115,69,25.48,90,77,0 +1,54,1,NA,0,0,219,110,72,26.05,95,86,0 +1,39,1,60,0,0,215,112,65,23.6,59,78,0 +1,46,1,20,0,0,279,118,82,22.78,58,74,0 +0,58,0,0,0,0,249,151,97.5,22.88,75,84,1 +1,46,1,5,0,0,198,109,81,23.28,62,85,0 +0,65,0,0,0,0,246,119,76,19.83,75,156,0 +0,59,0,0,0,0,246,135,70,18.43,80,107,0 +1,52,0,0,0,0,310,135,89,29.51,64,74,0 +0,40,0,0,0,0,219,100,60,19.78,72,60,0 +1,54,1,30,0,0,215,117.5,70.5,26.77,60,75,0 +0,51,0,0,0,0,214,139,93,29.8,67,82,0 +0,60,0,0,0,0,318,132,75.5,18.87,105,82,0 +1,51,1,50,0,0,335,125.5,94,27.77,80,67,0 +0,44,0,0,0,0,206,121,81,24.12,64,77,0 +0,47,1,20,0,0,325,160,95,32.07,95,87,1 +1,59,0,0,0,0,237,111,80,29.77,65,72,0 +1,40,0,0,0,0,234,127,79,26.56,60,92,0 +1,50,1,60,0,0,340,134,95,30.46,85,86,1 +0,54,0,0,0,0,258,148,93,20.51,74,95,1 +0,53,0,0,0,0,238,172.5,91,24.16,112,NA,1 +0,51,0,0,0,0,260,107.5,70,23.53,80,67,0 +1,61,1,7,0,0,176,125,82,29.82,70,75,1 +1,41,0,0,0,0,206,124,90,30.69,75,83,1 +0,47,0,0,0,0,278,156,96,27.86,80,70,0 +0,46,1,3,0,0,214,128,71,21.82,63,66,0 +0,60,0,0,0,0,334,132,94,25.38,80,98,1 +0,49,0,0,0,0,290,137.5,92,24.46,80,74,0 +0,57,0,0,1,0,190,155,85,26.08,55,66,1 +0,45,0,0,0,0,172,137,92.5,30.35,90,83,1 +0,39,0,0,0,0,194,115,70,25.73,70,54,0 +1,61,0,0,0,0,295,131.5,85,27.33,80,83,0 +0,40,0,0,0,0,185,117.5,72,21.12,70,79,0 +1,55,0,0,0,0,255,129,78,26.36,69,79,0 +1,61,0,0,0,0,179,112,66.5,24.38,60,100,0 +1,52,1,20,0,1,258,132,80,27.52,90,268,0 +1,54,0,0,0,0,206,141,92,35.85,75,120,0 +0,50,0,0,0,0,215,130.5,98,24.94,68,100,1 +1,37,1,60,0,0,254,122.5,82.5,23.87,88,83,0 +0,55,0,0,0,0,230,109,70,28.27,72,73,0 +0,61,1,20,0,0,326,141,75,26.11,60,72,1 +0,63,0,0,0,0,232,126,66,22.62,55,79,0 +0,57,0,0,0,0,306,135,88,28.36,80,70,0 +1,46,1,20,0,0,210,103,73,18,78,NA,0 +0,58,1,3,0,0,242,123,69,23.38,74,72,0 +0,57,0,0,0,0,160,105,70,27.01,52,61,0 +0,40,1,15,0,0,304,121,88,22.52,60,80,0 +1,55,1,NA,0,0,214,132.5,85.5,29.25,70,103,0 +0,43,1,20,0,0,232,122,70,23.09,67,77,0 +0,46,0,0,0,0,165,127.5,87,23.29,70,75,0 +1,52,1,20,0,0,262,100,68,18.65,70,74,0 +0,52,0,0,0,0,234,126,85,26.36,72,96,0 +1,64,0,0,0,0,217,129,61,21.85,68,81,0 +1,62,0,0,0,0,275,111,63,22.68,75,78,0 +0,42,0,0,0,0,230,142.5,79,25.15,82,99,1 +0,47,1,20,0,0,241,122.5,77,22.18,90,78,0 +1,38,1,20,0,0,250,118,80,31.22,95,NA,0 +1,52,0,0,0,0,265,143,94.5,26,50,75,0 +1,42,1,20,0,0,220,112.5,80,29,60,60,0 +1,39,1,20,0,0,217,107,73,23.98,73,67,0 +0,51,0,0,0,0,320,142.5,93.5,33.66,65,80,1 +0,38,0,0,0,0,255,125,85,23.05,72,73,0 +0,63,0,0,0,0,222,146,78,16.92,65,74,0 +0,41,0,0,0,0,235,143.5,90,26.22,70,83,0 +1,58,1,20,0,0,220,129,82,26.33,72,80,0 +0,47,1,43,0,0,252,132.5,85,20.05,72,80,0 +1,36,0,0,0,0,219,121,66,20.86,74,76,0 +0,56,0,0,0,0,248,112.5,60,22.69,75,92,0 +0,47,1,9,0,0,253,129,81,22.18,70,122,1 +1,49,1,20,0,0,273,142,108,23.19,95,72,1 +0,41,1,43,0,0,306,199,106,38.75,100,75,1 +0,57,1,20,1,0,262,140,93,22,108,NA,1 +1,51,1,10,0,0,269,134,92,30.39,85,81,1 +0,40,0,0,0,0,190,112,80,26.13,93,78,0 +0,37,0,0,0,0,240,125,96,27.17,75,NA,1 +0,44,0,0,0,0,169,179,107,44.55,70,77,1 +0,36,1,25,0,0,220,125,85,21.34,95,82,0 +0,61,0,0,0,0,210,179,100,21.64,78,95,1 +0,51,1,15,0,0,326,101,67,22.73,69,87,0 +0,43,1,20,0,0,195,104,57,20.86,75,78,0 +0,48,0,0,0,0,205,112,71,17.11,73,75,0 +0,37,0,0,0,0,169,104,66,20.84,70,72,0 +1,44,1,20,0,0,264,138,92,28.32,63,67,1 +0,54,0,0,0,0,218,130,85,20.55,72,85,0 +1,54,1,29,0,0,211,120,72,25.13,77,60,0 +0,59,0,0,0,0,239,124,72,19.34,80,70,0 +0,44,1,9,0,0,185,133,69,22.34,70,76,0 +0,48,0,0,0,0,258,109.5,74,26.73,68,NA,0 +0,45,0,0,0,0,220,108,81,25.68,75,70,0 +0,53,1,40,0,0,183,129,80,26.51,78,80,0 +1,53,1,20,0,0,211,112.5,70,22.74,63,NA,0 +1,46,1,10,0,0,214,118,82,29.41,66,94,0 +0,63,0,0,0,0,293,186.5,97,30.47,60,96,1 +1,52,0,0,0,0,238,131,99,31.19,96,86,1 +1,42,1,20,0,0,410,116,83,21.68,90,83,0 +0,48,0,0,0,0,193,138.5,87.5,25.1,64,90,0 +1,48,1,20,0,0,212,120,72,22.01,72,77,0 +0,42,0,0,0,0,182,138,91,20.02,90,74,0 +0,59,0,0,0,0,276,127.5,85.5,22.91,78,60,0 +1,40,0,0,0,0,213,145,100.5,27.34,95,117,1 +0,45,1,20,1,0,213,150,90,22.35,65,72,1 +1,38,1,9,0,0,274,120,80,25.17,80,68,0 +0,46,1,20,0,0,182,117,78,22.15,72,59,0 +1,67,1,15,0,0,285,155,90,30.42,70,77,1 +0,53,1,1,0,0,297,164,102,24.5,75,95,1 +0,38,1,12,0,0,209,122.5,76.5,24.51,90,73,0 +0,43,0,0,0,0,213,96,62,19.38,74,80,0 +1,59,0,0,1,0,294,170,103,31.6,66,70,1 +0,61,0,0,0,0,250,173,89,29.25,90,87,1 +1,52,1,20,0,0,167,134,80,29.77,72,102,0 +0,53,0,0,0,0,258,186,101,28.9,80,70,1 +1,67,0,0,0,0,222,154,106,26.71,85,74,1 +0,37,0,0,0,0,190,102,65,20.68,89,87,0 +0,54,0,0,0,0,302,160,94,29.4,75,75,1 +1,54,0,0,0,0,179,103,73,21.03,60,84,0 +1,55,0,0,0,0,219,115,84,26.08,88,93,0 +1,58,1,30,NA,0,200,144,90,24.9,75,76,0 +0,62,0,0,0,0,312,204,118,24.83,67,86,1 +1,52,1,20,0,0,233,114,78,22.81,50,73,0 +0,41,1,20,0,0,223,114,72,26.42,78,NA,0 +0,47,0,0,0,0,187,127.5,90,24.63,110,72,0 +1,47,0,0,0,0,219,116,82,24.05,58,87,0 +0,39,1,20,0,0,323,131.5,85,24.79,68,93,0 +0,67,0,0,NA,0,261,117,63,22.55,75,83,0 +0,64,0,0,0,0,239,114.5,65.5,19.34,64,NA,0 +0,39,1,40,0,0,NA,98,62,23.68,70,NA,0 +0,46,1,20,0,0,271,158,94,25.17,78,71,1 +0,51,0,0,0,0,226,130,80,23.24,60,63,0 +0,38,1,30,0,0,255,123.5,84.5,25.33,77,88,0 +1,61,1,15,0,0,204,120,80,25.71,80,83,0 +1,40,0,0,0,0,286,111,95.5,29.42,70,89,1 +0,42,1,20,0,0,248,106,70,20.77,68,NA,0 +0,52,0,0,0,0,272,112.5,75.5,22.69,90,83,0 +1,36,1,20,0,0,242,118.5,84.5,24.04,78,103,0 +1,40,1,20,0,0,203,112.5,70,22.71,75,72,0 +0,63,0,0,0,0,234,140,93,28.69,60,87,0 +0,55,1,20,0,0,246,139,90,29,87,100,0 +0,42,0,0,0,0,212,110,65,23.64,53,63,0 +1,55,1,20,0,0,259,217,112,29.6,63,77,1 +0,39,1,30,0,0,235,196,116,29.7,73,87,1 +0,57,0,0,0,0,309,130,75.5,25.99,96,75,0 +0,60,0,0,0,0,170,146,89,32.41,68,81,1 +1,53,0,0,0,0,157,123,83,19.94,75,88,0 +0,39,1,3,0,0,186,114,77,21.01,80,85,0 +0,40,0,0,0,0,164,135,75,NA,75,85,0 +0,62,0,0,0,0,249,176,89,24.49,75,81,1 +1,45,1,30,0,0,270,140,94,30.39,75,80,1 +0,40,0,0,0,0,168,111,78,20.82,65,74,0 +0,58,1,1,0,0,289,156.5,85,25.46,100,86,1 +0,36,1,20,0,0,272,113,66.5,20.69,67,59,0 +1,66,1,18,0,0,235,142,76,26.37,57,93,0 +0,62,0,0,1,0,274,167,94,28.18,100,80,1 +1,63,0,0,0,0,246,193,104,23.08,80,73,1 +0,61,1,10,0,0,200,187,95.5,21.57,58,64,0 +1,40,1,20,0,0,266,101,73,NA,70,64,0 +0,41,1,15,0,0,249,107.5,75,23.69,83,78,0 +1,47,0,0,0,0,271,147,97,24.99,90,78,0 +1,44,0,0,0,0,286,112.5,72.5,24.72,85,76,0 +0,46,0,0,0,0,237,196,120,31.64,58,60,1 +0,45,1,20,0,0,234,189,87,23.1,96,90,1 +0,61,1,NA,0,0,356,168,98,27.3,103,106,1 +0,43,0,0,0,0,255,130,85,29.56,80,78,0 +0,46,0,0,0,0,190,126.5,85,19.03,80,75,0 +1,52,0,0,0,0,219,136,76,24.49,52,73,0 +0,64,0,0,0,0,254,196,119,35.22,100,79,1 +0,49,0,0,0,0,170,112,79,21,60,80,0 +0,41,0,0,NA,0,179,121,83,23.04,66,90,0 +0,50,0,0,0,0,243,131,80,23.24,110,NA,0 +1,50,1,10,0,0,180,116,82,30.11,80,92,0 +1,59,0,0,0,0,178,170,118,33.45,79,81,1 +0,56,0,0,0,0,338,190,97,26.1,75,83,1 +0,49,0,0,0,0,241,120,70.5,23.29,87,84,0 +0,50,1,15,0,0,253,132,84.5,27.96,88,73,1 +1,46,1,5,0,0,221,125,88,24.81,72,87,0 +0,70,0,0,0,0,107,143,93,NA,68,62,1 +0,49,1,NA,0,0,233,158,102,25.31,90,72,1 +1,41,0,0,0,0,247,104,73,23.7,68,68,0 +0,46,0,0,0,0,244,107.5,70,22.72,47,88,0 +0,50,1,9,0,0,229,114,68,23.2,90,70,0 +0,44,0,0,0,0,197,125.5,82.5,25.13,79,50,0 +1,57,0,0,0,0,200,117.5,80,25.41,65,80,0 +0,58,0,0,0,0,312,161,100.5,21.51,75,64,1 +1,41,1,40,0,0,313,114,79,25.63,60,93,1 +0,43,0,0,0,0,240,110.5,66,24.09,67,80,0 +1,36,1,20,0,0,204,132.5,82.5,21.27,70,84,0 +1,52,1,2,0,0,246,122,81,27.61,90,98,0 +1,44,0,0,0,0,211,130,85.5,26.98,60,82,0 +0,36,1,5,0,0,200,121.5,72.5,23.09,75,75,0 +1,38,1,43,0,0,265,129,85,31.61,68,68,1 +0,54,1,5,0,0,298,151.5,96.5,30.29,64,77,1 +1,39,1,20,0,0,325,122,82,26.04,58,93,0 +0,40,0,0,0,0,228,116,78,27.72,62,75,0 +0,48,0,0,0,0,271,110,74,21.79,56,67,0 +0,39,1,15,0,0,229,113.5,72.5,22.33,84,82,0 +0,41,0,0,0,0,159,119,76,27.49,55,70,0 +1,40,1,10,0,0,195,110,70,24.75,79,NA,0 +0,51,0,0,0,0,216,154,98,32.35,75,103,1 +1,38,1,20,0,0,268,134,78,31.62,80,NA,0 +0,60,0,0,0,0,268,123,82,29.47,80,85,0 +0,43,0,0,0,1,231,155.5,99.5,34.95,68,274,1 +1,42,1,25,0,0,231,122,84,27.63,66,72,0 +0,51,1,3,0,0,246,111.5,74,25.09,78,78,0 +0,39,0,0,0,0,195,119,84,24.6,65,73,0 +1,39,1,20,0,0,148,101,62,24.47,70,81,0 +0,51,1,20,0,0,168,128,80,23.08,75,93,0 +0,46,0,0,0,0,222,131,80,25.46,72,72,0 +0,40,1,5,0,0,174,130,86,25.05,80,83,0 +1,41,1,20,0,0,180,127,86,20.72,73,63,0 +1,56,0,0,0,0,232,126,83,25.67,75,NA,0 +0,47,0,0,0,0,248,143.5,109,32.43,76,66,1 +1,56,1,7,0,0,222,159,91.5,27.12,70,80,1 +0,44,1,20,0,0,173,121.5,69,23.72,75,77,0 +0,54,1,5,0,0,209,139,75,25.82,72,95,1 +0,63,0,0,0,0,320,155,81,31.71,64,80,1 +0,53,0,0,0,0,246,115,61,25.96,80,60,0 +1,50,1,30,0,0,258,124,78,24.33,72,83,0 +0,44,1,20,0,0,240,109,71,23.75,70,83,0 +0,56,1,3,0,0,285,145,100,30.14,80,86,1 +1,43,1,20,0,0,202,104,69,25.82,59,63,0 +0,47,0,0,0,0,305,128,92.5,27.64,75,62,1 +1,37,1,20,0,0,272,114.5,80,27.6,63,57,0 +1,51,1,20,0,0,261,161,105,27.47,70,NA,1 +1,53,1,15,0,0,233,130,94,30.63,75,75,1 +1,41,1,20,0,0,192,122,82,25.03,83,66,0 +1,56,0,0,0,1,214,115,80,25.09,70,292,0 +1,44,1,40,0,0,312,157,97,29.91,85,74,1 +0,57,1,1,0,0,229,126.5,90,26,68,58,1 +0,40,1,10,0,0,187,144,90,22.17,90,93,1 +1,66,0,0,0,0,270,120,76,19.09,64,98,0 +0,34,1,20,0,0,175,117.5,73.5,22.15,65,75,0 +0,62,0,0,0,0,268,143.5,90,29.64,88,83,1 +0,55,0,0,0,0,265,123,78,24.59,55,NA,0 +0,36,0,0,0,0,165,115,71,21.27,64,86,0 +0,39,0,0,0,0,164,112,63,22.01,60,85,0 +1,54,1,35,0,0,240,146,91,24.41,82,70,0 +0,53,0,0,0,0,225,92,69,24.17,56,68,0 +1,35,1,15,0,0,215,133,86,28.7,86,84,0 +1,61,0,0,0,0,285,182.5,110,28.88,75,NA,1 +0,40,1,15,0,0,155,121,86,23.16,70,59,0 +0,41,1,10,0,0,169,119,72,19.78,60,74,0 +0,43,1,20,0,0,259,120,87,19.88,86,71,0 +0,64,0,0,0,0,372,169,85,26.01,75,79,1 +0,49,0,0,0,0,225,115.5,72.5,21.83,69,NA,0 +0,43,0,0,0,0,170,134,90,32.93,95,73,1 +0,40,1,20,0,0,271,138.5,88,27.24,80,NA,0 +0,66,1,9,0,0,225,110,76,18.23,83,85,0 +0,51,0,0,0,0,226,131,87,24.36,75,73,0 +0,57,1,15,0,0,250,117.5,71,23.84,50,75,0 +0,62,0,0,0,0,229,140,93,33.97,80,111,1 +0,51,1,10,0,0,201,147.5,95,22.34,100,67,1 +0,35,0,0,0,0,170,110,69,23.48,75,83,0 +0,42,1,20,0,0,246,120,70,19.42,72,78,0 +0,47,1,3,0,0,246,120,78,24.71,63,75,0 +1,40,0,0,0,0,265,133.5,81.5,23.78,75,84,1 +0,58,0,0,0,0,223,146.5,77.5,21.47,75,85,1 +0,43,1,15,0,0,203,110,71.5,24.56,96,65,0 +0,53,1,30,0,0,250,149.5,95,28.02,68,NA,0 +0,48,1,1,0,0,234,120,81,23.22,67,83,0 +0,49,1,11,0,0,206,107,74,20.23,65,83,0 +0,55,0,0,0,0,269,130,85,21.05,72,74,0 +0,57,0,0,0,0,366,146.5,80,24.19,85,73,1 +0,51,1,20,0,0,262,102,64,28.06,80,66,0 +0,50,0,0,0,0,208,126.5,84,22.01,75,79,0 +1,44,1,40,0,0,227,146.5,97,26.92,80,67,0 +1,39,1,30,0,0,257,118,76,22.92,73,76,0 +0,47,0,0,1,0,277,138.5,99,39.64,85,81,1 +0,38,1,9,0,0,266,118,75,21.79,85,NA,0 +1,65,0,0,1,0,201,166,93,28.16,54,91,1 +0,43,1,1,0,0,270,145.5,82,21.1,80,87,0 +1,48,1,20,0,0,268,116.5,82,21.34,60,82,0 +1,65,0,0,0,0,167,150,77,34.69,75,NA,0 +0,57,0,0,NA,0,262,129,75,23.67,70,95,0 +1,49,1,40,0,0,260,142,54,25.4,67,95,1 +0,56,0,0,0,0,254,106,65,24.08,75,NA,0 +0,39,1,20,0,0,247,122,70,18.7,70,65,0 +1,52,0,0,0,0,222,110,71,29.82,66,104,0 +0,49,0,0,0,0,286,119,85.5,22.29,60,72,0 +0,55,0,0,0,0,281,153,75,26.59,60,78,1 +0,46,0,0,0,0,239,166.5,107,19.27,110,70,1 +1,63,1,20,0,0,248,135,80,23.06,78,118,1 +0,64,0,0,0,0,218,185,97.5,21.82,85,79,1 +1,58,0,0,0,0,241,151,102,26,65,90,1 +0,52,0,0,0,0,221,124,69,23.37,58,81,0 +0,39,1,9,0,0,191,119,78,20.93,65,73,0 +0,39,1,20,0,0,190,106,72,25.64,75,75,0 +0,54,0,0,0,0,226,148,89,34.13,68,92,1 +1,38,1,20,0,0,279,124,87,26.68,76,75,0 +0,38,0,0,0,0,293,124,78,23.66,78,76,0 +0,55,1,9,0,0,289,141,83.5,24.99,76,76,0 +0,59,0,0,0,0,294,122,70,23.76,72,100,0 +1,45,1,10,0,0,150,105.5,57.5,23.21,70,87,0 +1,54,1,30,0,0,333,127,74,27.97,90,62,0 +0,48,0,0,0,0,255,120,77.5,28.6,75,75,0 +0,52,0,0,0,0,225,159,95,30.18,71,114,1 +1,47,0,0,0,0,NA,142,96,28.21,75,NA,0 +1,56,0,0,0,0,296,123,86,25.59,70,63,0 +0,38,1,5,0,0,192,130,80,27.51,75,90,0 +0,51,0,0,0,0,NA,130,89.5,NA,80,NA,0 +1,50,0,0,0,0,208,166.5,106.5,29.13,85,84,1 +1,56,0,0,0,0,280,123,75,27.82,68,112,0 +1,37,0,0,0,0,197,104,65,22.9,57,97,0 +0,47,0,0,0,0,215,202,132,20.49,100,77,1 +1,60,1,20,0,0,285,131.5,82,27.87,60,103,0 +0,43,1,5,0,0,250,110,70,21.14,64,85,0 +0,36,1,15,0,0,164,100,64,19.87,85,65,0 +1,40,1,1,0,0,234,116,79.5,24.77,62,87,0 +0,44,0,0,0,0,212,132,82,28.72,75,73,0 +0,45,1,8,0,0,195,111,79,23.22,86,85,0 +0,57,0,0,0,0,333,128,84,25.69,75,NA,0 +1,57,1,9,0,0,274,173,102,27.26,69,75,1 +1,48,1,17,0,0,250,177,124,26.4,75,69,1 +0,57,0,0,0,0,207,161,97,36.46,75,67,0 +0,39,0,0,1,0,283,159,105,30.06,80,76,1 +0,51,1,25,0,0,327,117,70,18.52,90,76,0 +0,60,0,0,0,0,270,154,82,27.82,93,90,1 +1,61,0,0,0,0,260,148,74,26.84,66,91,1 +1,39,0,0,0,0,320,123,90,24.44,85,69,1 +0,51,0,0,0,0,285,136.5,86.5,24.81,70,83,0 +0,63,0,0,1,0,281,135,83,24.91,63,68,1 +0,55,1,20,0,0,249,109,66.5,24.79,94,85,0 +0,47,0,0,0,0,250,167,96.5,23.79,65,NA,1 +1,57,1,20,0,0,193,104,64,26,62,87,0 +1,55,0,0,0,0,180,170,105,26.79,50,90,1 +1,48,0,0,0,0,235,150.5,98,32.4,75,92,0 +0,58,0,0,0,0,295,138,78,23.45,70,81,0 +0,41,0,0,0,0,197,121,84,23.07,80,NA,0 +1,37,1,15,0,0,158,129,87,24.66,62,67,0 +0,48,0,0,0,0,253,124,77,20.27,65,72,0 +0,43,0,0,0,0,190,111,74,24.47,72,NA,0 +1,43,1,40,0,0,226,103.5,60,26.11,90,67,0 +0,51,0,0,0,0,230,134,84,23.54,80,78,0 +0,41,0,0,0,0,235,158,93,22.18,78,70,1 +0,65,0,0,0,0,245,171,89,23.07,82,93,1 +1,62,1,10,0,0,157,134,84,25.95,105,76,0 +1,42,1,20,0,0,204,110,73,23.72,60,75,0 +0,52,0,0,0,0,NA,129,83,32.57,65,NA,0 +0,54,0,0,0,0,293,132,84,26.81,80,NA,1 +0,45,1,20,0,0,184,147,88,23.48,66,76,0 +0,58,1,20,0,0,215,119.5,73,29.86,67,93,0 +0,46,0,0,0,0,264,150,99,26.67,80,102,1 +1,51,1,43,0,0,176,140,88,27.56,110,83,1 +1,61,1,30,0,0,170,132,94,22.16,53,82,1 +1,40,0,0,0,0,209,123.5,83,28.06,72,63,0 +1,56,1,20,0,0,189,120,70,21.41,70,70,0 +1,53,0,0,0,0,202,119,80,23.98,64,78,0 +1,42,1,35,0,0,211,138,90,25.49,69,73,1 +0,59,0,0,0,0,240,155.5,100.5,33.54,72,116,1 +0,40,1,3,0,0,188,105,65,21.15,58,70,0 +1,60,0,0,0,0,275,132,82,23.53,75,62,0 +1,56,0,0,0,0,205,129,83.5,28.82,56,64,0 +1,37,0,0,0,0,178,127,81,33.07,82,NA,0 +1,40,1,20,0,0,160,123,79,21.19,85,93,0 +1,43,1,15,0,0,224,97,64,23.05,75,68,0 +0,55,0,0,1,0,285,158,98,30.23,70,88,1 +0,49,0,0,0,0,275,155,89,25.01,74,85,0 +1,59,1,20,0,0,238,112.5,75.5,26.42,58,67,0 +0,40,1,1,0,0,236,135,83,23.48,95,90,0 +0,38,1,10,0,0,212,107,67.5,20.4,110,87,0 +1,44,0,0,1,0,228,178,123,31.55,78,NA,1 +0,55,0,0,0,0,195,135,80,32.91,100,75,0 +1,45,1,5,0,0,238,141,87,26.46,54,68,1 +1,43,1,20,0,0,180,131,92,27.18,65,85,0 +1,57,1,30,0,0,256,135,88,29.51,60,75,1 +1,38,1,20,0,0,225,125,79,26.23,70,74,0 +0,40,0,0,0,0,180,136.5,89,17.61,84,77,0 +1,50,1,20,0,0,193,149,96,28.55,88,NA,0 +0,56,0,0,0,0,206,158,70,28.34,60,88,1 +0,64,1,9,0,0,342,128,71,20.52,60,62,0 +1,67,0,0,0,0,234,130,83,27.78,75,74,1 +0,43,1,15,0,0,233,100,70,22.9,75,78,0 +0,55,1,5,0,0,280,144,79,19.5,79,75,1 +0,66,0,0,0,0,275,132.5,85,34.36,70,NA,1 +1,48,1,35,0,0,188,120,82.5,31.67,80,68,0 +1,51,1,20,0,0,244,129,72,22.67,60,80,0 +1,57,1,1,0,0,245,122,69,24.17,65,92,0 +0,55,0,0,0,0,200,141,92,23.48,65,84,1 +0,38,0,0,0,0,167,102.5,60,22.58,60,57,0 +1,39,0,0,0,0,196,124.5,99,28.41,83,73,1 +0,63,1,3,0,0,246,163,82,24.38,64,108,1 +0,46,0,0,0,0,265,115,79.5,30,50,61,0 +0,41,1,5,0,0,209,122.5,90,20.79,90,NA,0 +0,49,0,0,0,0,203,128,72,24.87,75,82,0 +0,61,1,15,0,0,235,154,94,22.91,70,66,1 +0,42,0,0,0,0,256,129,85.5,31.84,95,74,0 +0,58,0,0,0,0,210,102,60,26.98,71,90,0 +0,41,0,0,0,0,233,115,70,25.03,68,97,0 +0,61,0,0,0,0,183,150,86,25.05,66,70,1 +0,62,0,0,0,0,344,154,110,35.11,85,76,1 +1,44,1,40,0,0,201,142.5,104.5,34.59,67,67,1 +0,61,0,0,0,0,340,121,78,23.33,65,73,0 +0,56,0,0,0,0,227,140,88,24.59,95,78,0 +1,41,0,0,0,0,256,107,73,26.38,60,65,0 +1,49,1,50,0,0,252,156,91,25.35,70,114,0 +1,56,0,0,0,0,194,127,83,26.05,80,73,1 +1,35,1,15,0,0,196,107.5,66.5,22.64,45,79,0 +1,57,0,0,0,0,263,146,94,29.08,63,NA,1 +1,40,0,0,0,0,190,121.5,74.5,29.35,73,93,0 +1,62,0,0,0,0,232,120,67.5,23.24,60,62,0 +0,47,0,0,0,0,289,126.5,84,21.71,69,70,0 +1,48,1,60,0,0,252,104,73.5,23.03,70,77,0 +0,42,1,20,0,0,196,145,87,29.65,97,60,1 +0,42,0,0,0,0,211,134,82,20.93,75,80,0 +0,50,0,0,0,0,229,105,72.5,26.25,90,79,0 +0,39,0,0,0,0,214,123,78,38.06,66,62,0 +0,58,0,0,1,1,294,195,90,27.73,72,127,1 +1,66,0,0,0,0,182,151,88,25.22,85,80,1 +1,61,0,0,1,0,204,120,67,24.84,63,75,1 +1,56,1,20,NA,0,191,130,70,26.09,75,97,0 +1,60,0,0,0,0,241,119.5,79,24.66,60,78,0 +0,67,1,3,0,0,326,157.5,78,24.63,85,77,1 +0,39,1,5,0,0,184,96,72,18.16,100,NA,0 +0,60,0,0,NA,0,273,176,84,22.17,66,79,1 +1,42,0,0,0,0,283,137,91,25.41,75,67,0 +0,50,1,20,0,0,235,121,78,23.01,52,78,0 +1,50,0,0,0,0,227,114,87,33.1,92,120,0 +0,43,0,0,0,0,249,155,93.5,21.99,85,115,0 +0,42,0,0,0,0,252,102,72.5,22.85,60,NA,0 +1,57,0,0,0,0,235,124,77,24.19,100,86,0 +0,56,0,0,0,0,344,119,82,26.82,80,105,0 +1,43,0,0,0,0,126,152,96.5,25.65,86,NA,0 +0,47,1,NA,0,0,365,127,76,24.44,72,80,0 +0,56,1,5,0,0,310,128.5,82,25.36,70,85,0 +0,36,0,0,0,0,213,126,80,19.53,95,79,0 +1,63,0,0,0,0,233,130,81,25.82,80,81,0 +0,62,1,3,0,0,298,137,85,26.73,76,87,1 +0,44,0,0,0,0,229,119,75.5,25.09,70,88,0 +0,41,1,9,0,0,200,124,76,24.2,80,86,0 +0,56,0,0,0,0,301,127.5,91.5,25.39,80,74,1 +1,56,1,20,0,0,217,200,120,33.71,68,72,1 +0,61,0,0,0,0,NA,115,60,25.5,76,99,0 +0,50,1,30,0,0,287,147.5,87.5,30.36,64,72,1 +0,55,0,0,0,0,310,135,76.5,26.31,110,74,0 +0,38,0,0,0,0,251,126,76,29.19,60,66,0 +0,40,0,0,0,0,236,98,75,26.63,70,NA,0 +0,47,1,40,0,0,221,144,91,35.78,85,66,0 +1,49,1,20,0,0,222,124,86,27.25,80,NA,0 +1,54,1,30,0,0,219,113,70,20.41,80,53,0 +0,40,0,0,0,0,290,125,90,32.81,85,87,0 +1,63,1,30,0,0,225,146,82,27.17,70,85,1 +0,65,0,0,0,0,288,146,94.5,26.54,80,74,0 +0,50,0,0,0,0,225,132,81,23.62,74,103,0 +1,54,1,20,0,0,215,120,85,29.93,62,75,0 +0,39,1,15,0,0,280,152,104,24.22,90,82,1 +1,46,0,0,0,0,235,136.5,92,22.92,68,89,1 +0,53,1,3,0,0,239,112.5,67,25.63,77,74,0 +1,48,1,20,0,1,230,135.5,90,25.34,95,91,1 +0,51,1,20,0,0,300,128,78,26.69,65,97,0 +1,64,0,0,0,0,283,113,77,22.73,75,67,0 +1,63,1,43,0,0,230,127,82,19.97,70,67,0 +0,55,0,0,0,0,238,137.5,87,26.89,67,107,0 +0,39,1,1,0,0,225,112,74,27.26,85,85,0 +0,59,0,0,0,0,261,141,78,25.32,68,76,1 +0,52,1,20,1,0,161,180,114,32.52,105,104,1 +0,48,0,0,0,0,186,107,76,26.39,65,90,0 +1,64,1,20,0,0,232,113.5,70,21.03,80,58,0 +0,64,0,0,0,0,229,145,85,29.67,70,74,1 +0,54,0,0,0,0,286,110,74,26.28,65,90,0 +1,55,0,0,0,1,245,133,78,29.05,73,115,0 +0,47,0,0,0,0,210,113,65,21.33,66,62,0 +1,42,1,20,0,0,220,119,73.5,23.31,67,63,0 +0,55,0,0,0,0,175,107.5,65,20.17,68,79,0 +0,42,1,18,0,0,219,126,73,22.65,80,65,0 +0,47,0,0,0,0,228,118,84,18.67,75,90,0 +1,51,0,0,NA,0,166,115,82.5,26.69,64,67,0 +1,62,1,20,0,0,300,108,73,20.87,60,80,0 +1,40,1,5,0,0,282,120,87,22.98,60,NA,0 +1,37,1,20,0,0,261,111.5,72.5,26.48,73,74,0 +1,58,1,20,0,0,184,127.5,70,25.62,50,80,0 +1,51,0,0,0,0,215,147,96,28.59,65,100,0 +0,48,1,10,0,0,188,170,110,26.03,90,118,1 +1,51,1,20,0,0,256,130,75,28.76,60,83,0 +0,52,0,0,0,0,223,132,82,26.06,75,63,0 +0,66,0,0,0,0,292,143,95,31.11,90,77,1 +1,37,1,20,0,0,211,116.5,77.5,24.5,68,78,0 +0,44,1,20,0,0,245,95,50,21.65,82,NA,0 +1,61,1,20,0,0,167,105,67.5,27.28,88,86,0 +0,58,0,0,0,0,296,141.5,87,28.31,75,NA,0 +0,42,1,25,0,0,286,133.5,80,26.25,75,65,0 +0,42,1,20,0,0,193,129,91.5,27.78,95,74,0 +1,40,0,0,0,0,222,112,82,23.71,77,85,0 +0,59,0,0,0,0,288,158,90,32.84,70,87,1 +0,58,0,0,0,1,240,150,80,26.45,66,255,1 +0,63,0,0,0,0,362,151.5,82.5,25.15,102,NA,0 +1,41,1,30,0,0,224,114,68,21.42,66,107,0 +0,51,0,0,0,0,246,135,82,24.67,70,77,0 +1,62,0,0,0,0,202,111,79.5,27.91,80,100,0 +0,49,0,0,0,0,307,112.5,70,23.86,60,72,0 +0,59,0,0,0,0,410,142,79,25.58,78,90,1 +0,44,1,20,0,0,243,129,88,30.85,90,83,0 +1,64,0,0,0,0,296,142,84,27.01,52,83,0 +0,52,1,20,0,0,NA,110,70,22.52,75,NA,0 +0,45,0,0,0,0,237,118,84,22.53,68,78,0 +0,63,0,0,0,0,237,155,92.5,31.5,62,83,1 +1,38,1,20,0,0,227,108,65.5,25.45,85,110,0 +0,39,0,0,0,0,220,137.5,101.5,22.85,60,88,1 +1,45,1,35,0,0,161,122,82,26.09,65,91,0 +0,55,0,0,0,0,232,119,81,30,60,100,0 +0,63,1,10,1,0,213,182,92,26.87,52,63,1 +1,41,0,0,0,0,250,150,92,33.29,85,85,1 +0,46,0,0,0,0,295,145,90,25.87,90,79,0 +0,58,0,0,0,0,232,145,94,26.38,66,80,1 +0,53,0,0,0,0,185,96,72,21.35,60,82,0 +1,59,0,0,0,0,210,134,84,25.64,58,77,0 +1,46,0,0,0,0,222,120.5,73.5,27.23,77,60,0 +0,51,0,0,0,0,216,128,83.5,24.41,72,75,0 +0,42,0,0,0,0,190,121,85.5,22.19,87,85,0 +0,62,0,0,0,0,262,175,85,30.91,68,72,1 +1,47,1,30,0,0,260,111,70,23.46,66,71,0 +0,43,0,0,0,0,192,107.5,67.5,21.22,67,NA,0 +0,48,1,15,0,0,229,111,85,24.1,75,74,0 +0,57,1,1,0,0,289,142,83,35.17,68,72,0 +0,43,1,8,0,0,192,119.5,69.5,24.67,90,83,0 +1,64,0,0,0,0,229,105,72.5,26.76,84,77,0 +1,45,1,NA,0,0,170,145.5,99,26.74,83,85,1 +0,49,0,0,0,0,238,97,67,23.17,75,77,0 +0,45,0,0,0,0,244,119,73,26.51,80,80,0 +1,53,1,30,0,0,226,139,80,23.62,72,69,1 +1,45,1,30,0,0,250,126,89.5,28.68,75,92,0 +0,52,1,9,0,0,249,112,75,22.54,72,71,0 +0,61,0,0,0,0,266,171,87,32.77,80,123,1 +0,46,0,0,0,0,212,132,82,34.52,80,72,0 +0,48,0,0,0,0,249,174,101.5,28.69,74,76,1 +1,48,1,43,0,0,176,116,86,21.45,62,76,0 +1,48,1,20,0,0,236,112.5,75,30.43,72,67,0 +1,44,1,35,0,0,198,143.5,90,27.99,50,NA,1 +1,63,1,20,0,0,213,163,94,NA,76,69,1 +1,41,1,40,0,0,224,126,79,22.94,53,68,0 +0,64,0,0,0,0,330,108,82,23.09,85,80,0 +0,53,1,20,0,0,317,123,81,20.33,80,NA,0 +1,53,1,43,0,0,238,126,72,23.4,62,73,0 +0,60,1,NA,0,0,228,112,74,24.51,63,NA,0 +1,42,1,20,0,0,319,116,74,26.62,83,136,0 +0,38,0,0,0,0,162,105,70,21.35,72,71,0 +0,63,0,0,NA,0,283,164,86,24.64,80,82,1 +1,63,0,0,0,0,240,136,94,29.17,64,57,1 +0,59,1,3,NA,0,201,145,88,39.91,65,89,1 +0,59,1,30,NA,0,316,110,70,19.83,80,74,0 +1,59,1,9,0,0,200,124,77,22.82,57,NA,0 +0,46,1,5,0,0,174,115.5,65,29.84,73,80,0 +1,61,0,0,0,0,238,232,136,24.83,75,79,1 +0,48,0,0,0,0,279,128.5,73.5,27.49,72,77,0 +1,57,0,0,0,0,198,119,80,30.05,70,79,0 +0,40,0,0,0,0,144,122.5,80,27.46,72,123,0 +0,49,0,0,0,0,193,134,88,25.77,69,76,0 +1,43,0,0,1,0,234,173,96,27.99,100,76,1 +0,50,0,0,1,0,241,132,85,23.81,55,84,1 +0,51,0,0,0,0,224,111.5,77,24.08,63,74,0 +0,58,0,0,0,1,260,85.5,51,20.76,87,206,0 +0,51,1,15,0,0,240,180,107.5,25.33,68,80,1 +0,40,0,0,0,0,195,132,81,24.26,80,86,0 +0,46,1,5,0,0,228,110,80,19.74,90,127,0 +1,44,1,20,0,0,260,134,80,22.25,87,81,0 +0,59,1,20,NA,0,225,110,64,28.1,66,64,0 +1,51,1,20,0,0,NA,112.5,74,26.37,70,NA,0 +0,44,0,0,0,0,192,112,62,30.47,75,82,0 +1,36,1,15,0,0,300,102,66.5,25.68,100,100,0 +1,36,1,35,0,0,240,114,76,25.82,66,NA,0 +1,64,1,15,1,0,266,191,81,25.33,95,78,1 +1,50,1,30,0,0,NA,152.5,105,35.85,72,NA,1 +0,47,1,9,0,0,261,133,77,27.96,87,105,0 +0,42,1,9,0,0,274,135,90,22.19,70,NA,1 +0,54,0,0,0,0,227,168,94,22.7,75,70,1 +0,52,0,0,0,0,279,148,99,26.64,86,85,1 +1,52,1,15,0,0,190,118,80,24.47,50,88,0 +0,51,0,0,0,0,351,134,97.5,21.66,100,NA,1 +0,38,0,0,0,0,150,108,70.5,20.42,72,88,0 +1,45,1,3,0,0,280,128,82,29.17,60,62,0 +1,42,1,20,0,0,225,110,80,22.51,65,77,0 +1,47,1,30,0,0,260,126,91,27.01,75,84,0 +0,43,0,0,0,0,240,141.5,93,38.43,72,77,1 +1,46,0,0,0,0,280,142,91,28.09,85,65,0 +0,42,0,0,0,0,233,132,82,26.81,69,71,0 +0,45,1,9,0,0,208,137,82,24.35,85,NA,0 +0,62,0,0,0,0,273,150.5,97,22.01,76,74,1 +0,62,0,0,0,1,390,184.5,83,18.99,87,47,1 +0,57,0,0,0,0,207,175,80,20.86,83,75,1 +1,35,1,3,0,0,282,111,84,29.42,80,NA,1 +0,39,1,10,0,0,226,95,59,22.88,80,83,0 +1,36,1,15,0,0,245,122,74.5,24.27,79,85,0 +0,38,1,20,0,0,282,135,80,29.14,75,89,0 +1,67,0,0,0,0,287,145,92,36.04,80,77,1 +0,64,0,0,0,0,173,144,82,22.54,60,77,1 +0,38,0,0,0,0,196,100,80,22.9,78,74,0 +1,38,0,0,0,0,244,118.5,88,28.68,77,65,0 +0,43,1,15,0,0,165,113,79,28.96,75,72,0 +1,38,0,0,0,0,221,130,87,26.43,72,55,0 +0,54,0,0,0,0,321,150,93,22.5,75,131,0 +0,41,0,0,0,0,192,103,72.5,22.72,61,70,0 +1,39,1,30,0,0,292,120,85,31.09,85,NA,0 +1,39,0,0,0,0,262,126,91,31.38,72,84,0 +0,50,0,0,0,0,216,100,70,23.88,70,73,0 +1,68,0,0,0,1,184,157,97,33.16,110,148,1 +1,54,0,0,0,0,225,134.5,92.5,30.62,78,69,1 +0,49,0,0,0,0,224,130,87,29.01,75,73,0 +0,40,1,20,0,0,237,112.5,77.5,23.58,75,84,0 +1,60,0,0,0,0,261,122,74,23.77,70,NA,0 +1,38,1,7,0,0,229,116,70,26.65,77,71,0 +0,48,1,20,0,0,253,105,59,19.42,62,83,0 +0,35,0,0,0,0,274,104,61,NA,60,68,0 +0,52,0,0,0,0,275,112,71,25.68,80,NA,0 +1,50,1,30,0,0,234,122,81.5,29.64,64,76,0 +0,50,0,0,0,0,281,107.5,74,23.44,85,79,0 +1,44,0,0,0,0,273,120,80,29.89,76,87,0 +1,44,1,20,0,0,163,105,72.5,21.02,67,62,0 +0,45,0,0,0,0,229,130,80,21.72,75,77,0 +0,52,0,0,0,0,210,146.5,82,32.27,85,72,0 +1,51,1,20,0,0,163,126,78,26.56,63,78,0 +1,57,0,0,0,0,251,114,75,26.35,80,72,0 +1,60,1,20,0,0,305,112.5,75,22.7,75,98,0 +1,40,1,3,0,0,165,117,77,21.71,50,66,0 +1,38,0,0,0,0,221,119,84,26.89,66,82,0 +1,57,1,20,0,0,257,138.5,90,25.14,87,101,0 +1,64,0,0,0,0,203,120,73,27.08,92,81,0 +0,56,0,0,0,0,220,122,74,25.66,71,93,0 +0,42,1,5,0,0,228,127.5,80,27.54,75,NA,0 +1,54,1,30,0,0,255,149,86,20.12,98,65,1 +1,42,1,20,0,0,274,120,83.5,23.95,80,79,0 +0,58,1,1,0,0,244,160.5,98,NA,86,69,1 +0,46,0,0,0,0,242,129,85,27.4,80,NA,0 +1,36,1,25,0,0,210,117,84,28.35,75,96,0 +0,35,0,0,0,0,165,117.5,72.5,27.86,63,67,0 +0,54,0,0,0,0,288,124,77,29.88,79,92,0 +1,62,1,20,0,0,245,127,79,23.5,72,73,0 +0,39,1,15,0,0,216,116,72,24.25,76,71,0 +1,45,1,10,NA,0,232,136,85,30.29,70,66,1 +0,37,1,20,0,0,166,112,73.5,21.64,75,93,0 +1,64,0,0,0,0,287,121,70,23.64,68,75,0 +0,59,0,0,0,0,220,145,86,25.9,90,77,1 +0,40,1,20,0,0,182,95.5,64,25.21,60,72,0 +1,43,1,30,0,0,NA,152,87,26.77,77,NA,1 +1,52,0,0,0,0,266,117,78,27.39,70,88,0 +1,48,1,25,0,0,200,126.5,91.5,30.34,75,NA,0 +0,40,1,20,0,0,237,130,72,23.54,75,80,0 +0,62,0,0,0,0,308,152,98,35.42,75,76,1 +0,48,0,0,0,0,270,134,87,24.91,75,77,0 +0,46,1,20,0,0,185,137,90,25.2,82,NA,0 +0,55,1,9,0,0,263,155,84,27.87,68,60,1 +1,57,0,0,0,0,213,141,90,30.77,60,77,0 +1,50,0,0,0,0,259,171,120,29.38,72,85,1 +1,50,1,35,0,0,236,102,69,21.98,70,73,0 +0,42,0,0,0,0,232,113,69,21.29,68,70,0 +1,65,0,0,0,1,240,235,100,NA,68,297,1 +0,42,1,9,0,0,185,123,74,24.41,83,92,0 +1,66,1,20,0,0,228,188,128,29.58,84,67,1 +0,41,0,0,0,0,177,107,76,22.37,75,65,0 +1,57,1,20,0,0,265,124,81,28.18,73,100,0 +0,39,0,0,0,0,179,120,82,21.51,96,NA,0 +1,43,1,20,0,0,206,162.5,93.5,29.01,90,77,1 +0,39,0,0,0,1,209,104,72,23.96,90,103,0 +0,50,0,0,0,0,243,157,98,23.82,70,78,1 +0,50,0,0,0,0,305,114,80,24.33,55,80,0 +0,33,1,5,0,0,200,119,74,23.8,75,74,0 +0,36,0,0,0,0,264,123,94.5,28.59,75,70,1 +0,44,0,0,0,0,240,127.5,87,22.19,60,NA,0 +1,55,1,20,0,0,244,125,93,24.5,75,NA,1 +0,53,1,9,0,0,309,130,86,22.37,82,80,0 +1,67,0,0,0,0,250,120,83,22.36,65,78,0 +1,50,0,0,0,0,227,132,59,25.12,57,NA,0 +0,57,1,20,0,0,267,102,62,20.34,60,NA,0 +0,40,1,10,0,0,169,123.5,77.5,23.09,71,NA,0 +1,41,0,0,0,0,248,140,87,30.34,96,NA,1 +0,55,1,35,0,0,275,144.5,88.5,27.05,72,79,0 +1,56,0,0,0,0,260,126.5,76,25.14,58,70,0 +1,39,1,25,0,0,217,119,85,23.32,66,96,0 +1,62,1,43,0,0,217,107.5,75,26.21,80,66,0 +1,57,0,0,0,0,258,146,76,24.94,63,87,0 +0,39,1,9,0,0,180,113,73,17.65,70,73,0 +1,56,1,17,0,0,177,127,79,20.12,70,88,0 +0,56,0,0,0,0,242,115,70,32.07,83,NA,0 +1,54,0,0,0,0,258,146,98.5,26.05,60,68,1 +0,61,0,0,NA,0,218,148,80,37.04,82,78,0 +0,39,0,0,0,0,195,137,93,26.39,88,75,0 +0,37,1,3,0,0,160,104,61,20.22,85,100,0 +0,60,0,0,0,0,266,135,87,26.72,75,82,0 +0,62,1,5,0,0,254,167.5,102.5,27.15,75,83,1 +1,58,1,20,0,0,200,136,88,26.25,75,73,0 +0,51,1,20,0,0,195,154,96,28.38,75,75,1 +1,48,0,0,0,0,234,141,98,21.06,53,82,1 +0,58,1,20,0,0,225,146,77,24.6,96,53,0 +1,54,1,20,0,0,225,133,83,22.18,80,65,1 +0,63,0,0,0,0,276,134,85,23.64,70,86,0 +1,37,1,30,0,0,179,125,82,19.53,60,70,0 +0,59,1,3,0,0,216,205,92.5,25.86,66,84,1 +1,55,0,0,0,0,298,169.5,104.5,27.51,76,78,0 +0,53,0,0,0,0,315,159,99,27.94,75,NA,1 +0,40,1,5,0,0,143,125.5,80,21.99,71,95,0 +0,56,0,0,0,0,290,185,107.5,26.45,82,84,1 +0,41,1,15,0,0,195,120.5,76,22.91,75,70,0 +1,45,1,3,0,0,215,144,110,25.71,58,85,0 +0,37,1,20,0,0,164,96.5,67,24.99,68,67,0 +0,50,0,0,0,0,259,152,97,33.68,75,76,1 +0,41,0,0,0,0,206,130,88,22.25,85,79,0 +1,41,0,0,0,0,298,132,85.5,31.06,58,90,0 +0,49,1,20,0,0,283,127,86,23.68,95,78,0 +1,51,1,6,0,0,234,129,94,23.9,65,96,0 +1,62,0,0,0,0,202,149.5,85,25.42,65,80,0 +1,42,0,0,0,0,258,110,69,26.25,60,73,0 +0,59,0,0,0,0,293,124,74,25.56,72,77,0 +0,52,0,0,0,0,245,148,92,22.7,70,60,1 +0,37,1,20,0,0,154,106,59.5,22.71,72,50,0 +1,36,1,30,0,0,310,126,87,28.09,78,78,0 +1,36,0,0,0,0,186,121,79.5,27.08,56,65,0 +0,39,1,9,0,0,170,110.5,69,22.19,60,103,0 +0,55,0,0,0,0,271,146.5,80,20.69,100,89,0 +0,40,1,10,0,0,200,116,69,23.9,75,78,0 +1,38,0,0,0,0,305,130,95,23.1,65,78,0 +0,44,1,5,0,0,265,110,78,20.88,60,68,0 +1,54,0,0,0,0,260,116,77,28.56,57,61,0 +1,40,1,30,0,0,162,129,76.5,24.12,70,73,0 +0,42,1,15,0,0,212,115,72,23.72,73,100,0 +0,62,0,0,0,0,242,130,91,31.12,80,NA,1 +1,48,1,1,0,0,259,130,95,23.68,68,NA,0 +0,66,0,0,0,0,212,220,96,44.71,110,95,1 +0,54,1,20,0,0,274,116,79,24.77,72,65,0 +0,57,0,0,0,0,274,116,83,25.77,70,83,0 +1,38,0,0,0,0,328,124,82,29.08,82,69,0 +0,42,0,0,0,0,165,146,90,28.78,60,74,1 +0,42,1,30,0,0,240,127,90,38.54,75,69,0 +0,45,1,20,0,0,255,111,72,17.32,88,65,0 +1,48,0,0,0,0,210,134,83,25.08,75,107,0 +1,44,0,0,0,0,249,182,111,39.04,90,67,1 +0,62,0,0,0,0,205,118,79.5,30.21,82,75,0 +0,41,0,0,0,0,203,124,86,28.25,83,80,0 +0,62,0,0,NA,0,294,139,78,21.11,85,79,1 +0,58,1,20,1,0,156,170,98,28.88,72,NA,1 +1,49,1,20,0,0,247,150,88,27.92,75,74,0 +0,54,0,0,0,0,205,107.5,67.5,20.26,75,88,0 +0,53,0,0,0,0,240,109,79,NA,92,80,0 +0,43,0,0,0,0,229,124,79,30.28,72,77,0 +0,61,0,0,0,0,273,210,120,25.11,88,83,1 +1,63,0,0,0,1,229,109,75,38.42,110,120,0 +0,56,1,9,NA,0,320,142,84,27.9,74,95,1 +1,38,1,50,0,0,300,120,74,28.74,70,78,0 +1,58,1,20,0,0,282,110,70,26.4,70,NA,0 +0,53,0,0,0,0,279,132,81,26.18,67,77,0 +0,45,1,3,0,0,250,130,80,20.24,90,86,0 +0,51,1,20,0,0,293,151,92,30.67,80,77,1 +1,52,1,30,1,0,238,184,102,28.88,90,94,1 +1,40,1,20,0,0,297,105,73,27.15,67,88,0 +1,42,1,30,0,0,232,130,91,25.77,72,70,0 +1,37,1,1,0,0,165,134.5,91,27.97,86,80,1 +0,52,1,20,0,0,232,115,80,28.79,72,68,0 +1,44,1,15,0,0,209,127,86,26.41,85,88,0 +1,44,1,30,0,0,339,97,62,22.19,90,85,0 +1,42,1,43,0,0,272,128,83,33.26,80,63,1 +1,45,1,25,0,0,288,124,81,27.94,69,118,0 +1,39,0,0,0,0,190,114,70,27.8,60,80,0 +0,63,0,0,0,0,293,193,63,30,70,76,1 +1,42,1,20,0,0,190,121.5,79,24.2,92,77,0 +1,55,0,0,0,0,260,120,80,28.89,60,68,0 +0,46,0,0,0,0,230,154,98,28.23,75,90,1 +1,45,0,0,0,0,258,128,79,32.03,70,75,0 +0,37,0,0,0,0,209,115,69,24.66,72,77,0 +0,50,0,0,0,0,232,120,75,23.88,60,74,0 +1,52,1,20,0,0,260,158,96,21.17,74,82,1 +1,53,1,20,0,0,260,120,80,29.35,64,73,0 +1,46,1,15,0,0,405,181.5,102.5,26.33,98,97,1 +0,35,0,0,0,0,197,109,73,26.38,71,95,0 +0,42,1,10,0,0,359,115,71,24.46,75,68,0 +0,48,1,2,0,0,NA,129,90,16.61,80,NA,0 +0,52,0,0,0,0,234,130,75,28.35,82,72,0 +1,41,0,0,0,0,230,150,101,28.54,75,65,1 +0,48,1,35,0,0,174,154,84,31.76,72,90,1 +1,62,1,20,0,0,295,139,80,21.28,63,97,0 +0,53,0,0,0,0,243,188.5,106.5,29.82,68,70,1 +1,60,1,20,0,0,260,127.5,72.5,25.06,65,75,0 +1,45,1,20,0,0,202,99,76,24.61,94,NA,0 +1,39,1,20,0,1,195,106,80,23.57,85,132,0 +1,43,1,20,0,0,226,132.5,85,26.64,72,58,0 +0,34,1,40,0,0,184,118,77,25.56,86,NA,0 +1,42,1,20,0,0,182,120,83,27.26,85,87,0 +1,60,1,30,0,0,288,122.5,68.5,22.13,80,88,0 +0,65,1,1,0,0,322,165,95,22.84,80,81,1 +0,45,1,10,0,0,230,116,75,21.35,92,77,0 +0,38,1,10,0,0,309,113,68,21.35,60,75,0 +1,38,0,0,0,0,240,122.5,80,23.97,60,43,0 +0,59,0,0,0,0,205,142.5,74.5,25.63,85,83,0 +0,55,0,0,0,0,232,170,92,26.09,96,74,1 +1,62,0,0,0,0,193,132.5,80,27.2,70,78,0 +0,37,1,43,0,0,167,118,76,19.61,65,67,0 +1,38,1,20,0,0,238,119,83.5,24.18,68,71,0 +1,52,0,0,0,0,285,110,79,23.41,67,65,0 +0,45,1,15,0,0,239,112,70,23.48,68,95,0 +0,41,1,15,0,0,235,107.5,68,21.1,80,113,0 +1,52,0,0,0,1,219,125,82,24.06,73,173,0 +1,59,1,20,0,0,207,111.5,67,20.12,55,84,0 +0,53,0,0,0,0,260,139,80,20.31,72,76,0 +0,48,0,0,0,0,246,165,84,27.6,122,73,1 +1,54,1,43,0,0,288,145,92.5,26.2,72,98,0 +1,39,1,30,0,0,255,108,75,23.9,67,70,0 +1,46,0,0,0,0,270,138,97,33.79,90,65,0 +1,45,1,20,0,0,239,116,68,26,78,79,0 +0,50,1,20,0,0,202,138,72,25.03,110,98,0 +1,46,1,20,0,0,233,108,74,23.97,85,82,0 +0,36,0,0,0,0,200,108,62,20.79,75,69,0 +0,53,0,0,0,0,243,164,111,39.53,100,70,1 +1,50,1,20,0,0,250,148,108,24,80,86,1 +0,63,0,0,0,0,235,131.5,91,24.69,80,68,1 +0,38,1,15,0,0,178,96,67,20.4,65,82,0 +0,56,0,0,0,0,207,120,60,22.89,75,71,0 +1,41,0,0,0,0,260,128,84,31.61,66,48,0 +0,38,1,10,0,0,220,114,73.5,27.06,68,67,0 +1,48,0,0,0,0,205,148,103,28.31,75,60,1 +1,56,1,20,0,0,197,140,86,25.16,90,71,1 +0,55,0,0,0,0,282,127.5,69,26.76,76,NA,0 +1,41,1,10,0,0,213,120,78,28.78,80,70,0 +1,48,0,0,0,0,232,130.5,90,29.07,85,118,1 +1,57,0,0,0,0,238,128.5,87.5,25.38,80,89,0 +1,44,1,20,0,0,258,116,67,28.3,75,79,0 +1,40,1,40,0,0,208,120,80,25.98,75,66,0 +0,45,1,5,0,0,268,100,70,23.45,73,87,0 +1,57,0,0,0,0,314,109.5,72,25.62,72,71,0 +0,65,1,3,0,0,211,190,90,39.54,80,NA,1 +0,58,1,8,1,0,NA,185,105,31.18,75,NA,1 +1,42,1,20,0,0,260,132,86,29.76,75,66,1 +1,38,0,0,0,0,148,115,75,26.49,75,74,0 +1,41,1,20,0,0,199,139,80,25.51,62,62,0 +0,61,0,0,0,0,270,136.5,89,30.65,63,87,0 +0,63,0,0,0,0,275,148,75,28.87,70,83,1 +1,43,0,0,0,0,179,125,80,23.05,63,NA,0 +1,43,1,15,0,0,240,137,86,26.32,100,NA,0 +1,52,1,30,0,0,346,133,96,25.95,65,126,0 +0,48,0,0,0,0,237,124.5,66.5,33.29,80,91,0 +0,45,0,0,0,0,285,107.5,80,28.06,74,NA,0 +1,44,1,20,0,0,193,134,88,23.77,75,77,0 +0,49,1,30,1,0,350,174,90,18.44,110,78,1 +1,42,1,20,0,0,166,110,70,19.97,75,69,0 +0,42,1,6,0,0,219,120,70,24.1,57,73,0 +0,57,1,20,1,0,281,192,105,27.04,64,75,1 +1,57,0,0,0,0,272,109,77,25.57,75,89,0 +0,54,0,0,0,0,243,138,79,21.93,75,95,0 +1,39,0,0,0,0,208,146,92,25.91,69,74,1 +0,50,1,10,0,0,240,176.5,115,27.71,70,83,1 +0,49,1,1,0,0,240,110,71,22.02,73,84,0 +1,49,1,20,0,0,206,101,69,28.4,85,82,0 +1,48,0,0,0,0,251,148,91,25.79,75,83,1 +0,39,1,9,0,0,270,110,78,22,75,68,0 +0,54,0,0,0,0,292,137,84,24.96,60,94,0 +0,51,0,0,0,0,235,110.5,69,21.8,70,86,0 +1,54,1,30,0,0,212,153,100,27.03,52,82,1 +0,58,0,0,0,0,200,177,97,28.4,86,73,1 +0,45,0,0,0,0,238,127.5,83.5,27.73,90,78,0 +1,60,0,0,0,0,227,119,76,24.8,71,92,0 +1,47,1,1,0,0,183,112.5,73,24.27,68,80,0 +0,40,0,0,0,0,254,132,92,23.45,75,62,1 +0,64,0,0,0,0,213,133,77.5,35.62,77,74,0 +0,47,0,0,0,0,190,160,96,28.02,94,64,1 +1,54,1,30,0,0,195,113.5,72,21.78,65,67,0 +1,60,1,40,0,0,230,149,95,26.68,67,92,1 +1,48,0,0,1,0,336,183,108,28.11,106,96,1 +0,41,0,0,0,0,204,129,86,20.72,60,70,0 +0,36,0,0,0,0,180,116,85.5,26.32,95,81,0 +1,37,0,0,0,0,230,123,92,28.61,71,80,1 +0,39,0,0,0,0,175,114,68,24.2,80,93,0 +1,63,0,0,0,0,235,199,114,29.76,95,84,1 +1,66,1,3,0,0,199,159,92,26.35,66,74,1 +0,48,0,0,0,0,202,171,97,32.67,95,78,1 +0,37,1,1,0,0,274,197.5,125,43.48,68,94,1 +0,64,0,0,0,0,246,190,100,32.68,92,102,1 +0,46,0,0,0,0,275,116,88.5,28.04,70,70,0 +1,38,0,0,0,0,203,116,81,30.19,62,80,0 +0,43,1,20,0,0,245,112.5,80,23.43,90,77,0 +0,44,1,5,0,0,205,120,83.5,24.3,67,77,0 +1,44,1,20,0,0,213,116,77.5,26.09,75,83,0 +0,63,1,9,0,0,281,158.5,90,20.5,72,NA,1 +1,63,0,0,0,0,219,145.5,80,26.6,72,NA,1 +0,46,0,0,0,0,233,174,100,26.72,85,73,1 +0,46,0,0,0,0,200,133,84,26.15,70,83,0 +1,60,1,20,0,0,195,107.5,72,26.53,70,80,0 +1,61,1,13,0,0,312,110,66,26.28,68,96,0 +0,51,1,5,0,0,192,133,87,20.72,78,77,0 +1,63,1,9,0,0,176,116,83,27.8,65,75,0 +1,61,1,15,0,0,157,195,108,25.08,75,78,1 +1,36,0,0,0,0,183,140,85,24.39,67,84,1 +1,43,1,15,0,0,249,145,85,28.77,75,100,0 +1,60,1,12,0,0,233,135,75,22.17,75,60,0 +1,46,1,20,0,0,259,101,71,20.1,80,73,0 +0,48,1,20,0,0,252,143,81,24,85,101,1 +1,66,1,20,0,0,273,145,88,25.41,69,74,1 +1,40,1,20,0,0,193,122,78,28.4,70,93,0 +0,42,0,0,0,0,199,111,71,27.23,67,107,0 +0,44,1,10,0,0,229,146,78,25.25,69,75,1 +1,46,1,20,0,0,181,122,87.5,29.15,80,83,1 +0,50,1,15,0,0,168,120,80,25.26,96,60,0 +0,40,0,0,0,0,267,150,93,31.77,93,74,0 +1,50,1,20,0,0,261,180,100,25.9,92,66,1 +0,49,1,9,0,0,235,109,70,28.66,74,73,0 +0,42,1,9,0,0,281,115.5,79,22.9,80,71,0 +0,39,0,0,0,0,201,121,78.5,24.26,67,90,0 +1,49,0,0,0,0,215,132,85,33.14,81,75,0 +0,50,0,0,0,0,NA,165,100,24.59,75,NA,1 +0,58,0,0,0,0,NA,155,86,22.09,68,NA,1 +0,41,1,9,0,0,218,102,67,19.23,78,78,0 +1,37,0,0,0,0,266,110,72.5,26.09,77,73,0 +1,43,0,0,0,0,217,115,80,28.82,52,70,0 +0,64,1,30,0,0,241,136.5,85,26.42,70,77,0 +0,49,0,0,0,0,246,107,73,29.36,79,80,0 +0,40,0,0,0,0,226,118,72,24.75,87,79,0 +1,48,1,25,0,0,216,144,79,25.09,67,85,1 +0,63,0,0,0,0,380,175,78,20.15,68,95,1 +0,51,0,0,0,0,233,120,81,28.25,80,75,0 +0,64,0,0,0,0,270,146,106,27.96,75,77,0 +0,58,0,0,0,0,281,150,101,36.91,72,97,1 +0,48,1,17,0,0,299,132,81,24.35,75,70,0 +1,37,1,25,0,0,243,125,75,29.19,60,78,0 +0,58,1,20,0,0,260,180,100,25.56,100,NA,1 +0,55,0,0,0,0,293,165,106,24.71,90,79,1 +0,42,0,0,0,0,270,126,86,23.98,80,77,0 +1,43,1,30,0,0,262,105,72.5,28.36,82,70,0 +0,44,1,9,0,0,212,128,81.5,27.51,80,87,0 +1,37,1,20,0,0,232,129,74,24.46,86,88,0 +0,50,0,0,0,0,254,132,96,29.35,90,67,1 +1,58,0,0,0,0,200,128,83,29.63,68,80,0 +1,42,1,5,0,0,355,113,81,26.17,90,71,0 +1,48,1,20,0,0,210,134.5,84,27.97,65,87,0 +0,32,1,15,0,0,242,111,70,29.84,80,88,0 +0,39,0,0,0,0,240,118,84,25.57,80,75,0 +0,57,0,0,NA,0,328,181,112.5,27.05,85,94,1 +0,54,1,5,0,0,390,150,94,27.34,75,71,1 +0,50,0,0,0,0,190,148,92.5,22.99,80,90,1 +0,60,0,0,0,0,212,146,80,28.53,95,72,1 +0,54,0,0,0,0,315,176,87,29.23,82,72,1 +0,46,0,0,0,0,230,115,75,22.9,58,79,0 +0,50,0,0,0,0,189,144,88,39.08,60,87,0 +1,45,0,0,0,0,218,133,87,31.9,88,115,1 +1,63,0,0,0,0,210,124,81,24.38,67,NA,0 +1,60,0,0,0,0,264,137,80,29.99,65,58,0 +0,52,0,0,0,0,279,135,86,27.02,100,72,0 +1,58,0,0,0,1,287,145,72.5,26.27,88,206,1 +0,38,1,10,0,0,186,166,96,33.14,75,75,0 +1,59,1,30,0,0,235,136,96,28.61,54,85,0 +0,41,0,0,0,0,156,121,88,23.57,70,86,0 +1,46,1,20,0,0,275,137,88,29.28,110,88,0 +0,53,0,0,0,0,310,146,91,29.3,75,72,1 +1,50,0,0,0,0,259,132.5,92,30.41,68,75,0 +0,57,1,1,0,0,240,142,85,22.55,80,77,0 +1,40,1,20,0,0,332,114,76,26.51,70,90,0 +0,41,0,0,0,0,228,108,62,23.92,63,99,0 +0,41,1,9,0,0,280,129,89,39.69,110,65,0 +0,56,0,0,0,0,254,113,61,25.5,79,87,0 +0,49,0,0,0,0,205,137,95,25.29,100,74,1 +1,47,0,0,0,0,265,137.5,88.5,23.75,83,90,0 +1,64,0,0,0,0,227,102,61,23.29,70,81,0 +0,59,1,15,0,1,342,137,83.5,25.18,86,140,0 +1,40,1,8,0,0,302,122,95,23.81,80,82,1 +0,45,1,3,0,0,152,118.5,76,25.38,74,68,0 +0,46,0,0,0,0,193,110,68,22.19,68,65,0 +0,42,0,0,0,0,196,136,88,34.55,75,78,1 +1,62,1,10,0,0,271,125.5,72.5,31.11,62,NA,0 +0,41,1,20,0,0,326,124,78,25.27,88,67,0 +0,35,0,0,0,0,135,105,69,22.88,70,76,0 +0,37,1,10,0,0,156,120,87,21.8,66,89,0 +1,55,1,30,0,0,230,130,85,30.16,72,108,0 +1,56,1,30,0,0,303,136.5,97,26.64,93,106,1 +1,51,1,15,0,0,220,125,82,24.1,60,73,0 +0,49,1,NA,0,0,252,123,69,21.45,72,89,0 +0,62,0,0,0,1,233,130,87,21.34,85,386,0 +0,49,1,20,0,0,323,123.5,78,22.86,92,63,0 +0,44,1,3,0,0,288,150,89,21.11,90,97,0 +1,47,1,15,0,0,225,137,97,27.31,66,NA,1 +1,39,1,20,0,0,190,118,70,23.57,64,69,0 +0,51,1,10,0,0,255,102.5,64.5,24.14,65,71,0 +1,48,1,17,0,0,218,113,79,27.33,62,73,0 +1,43,1,20,0,0,179,129,81,19.05,63,77,0 +0,65,0,0,0,0,212,94,62,25.83,80,88,0 +0,65,0,0,0,0,216,163,102,30.12,91,73,1 +1,56,1,20,0,0,205,210,130,25.49,95,127,1 +0,61,1,25,0,0,NA,147.5,72.5,26.58,83,NA,0 +1,45,1,9,0,0,188,132,91,28.04,70,77,1 +0,61,0,0,0,0,260,112.5,75,21.97,60,74,0 +0,53,0,0,0,0,180,184.5,110.5,27.49,62,74,1 +0,65,0,0,0,0,221,141,82.5,29.48,80,93,0 +0,34,1,10,0,0,159,92.5,70,22.15,65,68,0 +1,46,1,9,0,0,216,126,85,30.1,80,70,1 +1,49,1,20,0,0,193,172,105,19.7,90,77,1 +0,63,0,0,0,0,229,120,82,25.58,78,73,0 +1,55,1,20,0,0,268,128,87,28.57,70,87,0 +1,42,1,9,0,0,205,110,73,22.4,61,66,0 +0,44,1,5,0,0,214,102,68,32.82,88,80,0 +1,49,1,9,0,0,193,115,79,21.86,48,88,0 +1,60,1,20,0,0,212,138.5,87.5,19.54,64,73,0 +0,47,1,20,0,0,261,120,77.5,23.26,85,NA,0 +1,49,1,20,0,0,189,132,76,20.26,75,60,0 +0,52,1,20,0,0,248,128,74,21.84,65,79,0 +0,41,0,0,0,0,185,125,88,24.88,107,75,0 +1,36,1,20,0,0,155,127.5,77.5,30.2,56,61,0 +0,50,1,9,0,0,161,145,89,20.3,66,81,1 +1,59,1,20,0,0,266,165,99,29.07,96,82,1 +1,44,1,43,0,0,275,127,82.5,27.43,77,76,0 +0,49,0,0,0,0,224,126,82.5,27.49,100,67,0 +1,51,0,0,0,0,223,117.5,77.5,27.78,68,97,0 +0,56,1,20,0,0,325,160,97.5,23.4,85,86,1 +1,38,0,0,0,0,278,136.5,87,29.84,91,75,0 +1,66,0,0,0,0,124,138,91,32.33,75,96,1 +0,54,0,0,0,0,253,127,68.5,22.54,70,76,0 +0,48,1,25,0,0,250,103,76.5,23.25,72,66,0 +0,63,1,30,1,0,213,172,95,27.68,50,67,1 +1,63,1,20,0,0,264,129.5,82.5,24.91,88,83,1 +0,50,1,30,0,0,214,176,113,22.17,68,71,1 +1,51,0,0,0,0,205,125,94,29.11,72,90,1 +1,48,0,0,0,0,243,116,82,26.09,80,85,0 +0,60,0,0,0,0,295,162,85,32.76,75,71,1 +1,48,1,20,0,0,187,102,69,24.24,68,72,0 +1,58,0,0,0,0,189,136,86,23.97,71,60,0 +0,44,0,0,0,0,242,124,72.5,23.07,67,83,0 +0,39,1,20,0,0,236,127,78,17.51,75,76,0 +0,37,1,9,0,0,185,115,76,23.55,85,80,0 +1,56,1,20,0,0,270,109,75,24.58,67,64,0 +1,59,0,0,0,0,285,128,91,28.23,70,80,1 +0,53,0,0,0,0,185,202.5,85,24.65,107,104,1 +1,59,0,0,0,0,299,120.5,78,25.45,60,100,0 +1,65,0,0,0,0,266,140,100,29.36,80,77,1 +0,39,1,9,0,0,254,112.5,75,22.91,72,NA,0 +0,58,0,0,1,0,290,145,88,36.65,60,86,1 +0,40,1,20,0,0,261,112,67,21.83,75,61,0 +1,37,1,9,0,0,237,102,72,19.68,67,83,0 +1,64,0,0,0,0,189,156,69,21.68,66,100,1 +1,62,0,0,1,0,208,140,97.5,27.27,70,121,1 +1,35,0,0,0,0,275,132.5,79,34.04,75,80,0 +1,48,1,20,0,0,259,135,90,20.72,102,81,1 +1,37,1,16,0,0,212,120,72,23.51,75,80,0 +1,52,0,0,0,0,202,136,94,29.93,83,67,0 +1,51,1,20,0,0,227,139,74,29.29,80,67,0 +0,66,1,1,1,0,261,154,97,32.6,70,81,1 +0,54,0,0,0,0,239,142.5,83.5,30.47,83,84,1 +1,55,0,0,0,0,165,166,101,24.8,65,90,1 +1,57,1,20,0,0,198,128,85,28.18,85,99,0 +1,39,1,20,0,0,232,122.5,78.5,26.11,80,73,0 +1,59,0,0,0,0,252,146,92,27.88,68,80,0 +0,55,0,0,0,0,260,136.5,87.5,25.41,75,60,0 +1,42,1,20,0,0,230,112,66,25.31,80,69,0 +0,45,0,0,0,0,260,98,74,19.16,73,76,0 +0,48,1,20,0,0,271,130,84,21.97,120,85,0 +0,50,1,10,0,0,220,122,80,24.22,75,72,0 +0,37,1,20,0,0,200,112.5,68,25.87,65,67,0 +0,57,0,0,0,0,273,131,84,22.99,90,76,0 +1,57,1,20,0,0,235,150,95.5,27.56,78,73,1 +0,42,1,30,0,0,201,141,84.5,26.58,90,97,0 +0,67,1,15,0,0,371,166,85,25.35,100,86,1 +1,44,0,0,0,0,201,120,81,26.49,70,78,0 +0,59,1,15,0,0,309,141,77.5,25.97,70,79,0 +1,47,0,0,0,0,190,120,81,24.54,60,73,0 +0,59,1,10,1,0,312,175,82,39.82,120,85,1 +1,46,0,0,0,0,300,146,98.5,30.41,60,79,1 +0,39,0,0,0,0,227,138,89,26.74,95,60,0 +1,45,0,0,0,0,215,104,72,30.34,70,79,0 +1,53,0,0,0,0,235,130,80,28.15,84,78,0 +0,67,1,3,0,0,270,137.5,72.5,35.01,85,73,1 +1,57,0,0,0,1,300,121,74,28.09,80,155,0 +0,46,1,15,0,0,232,115,70,25.18,75,59,0 +1,45,1,1,0,0,277,140,84,28.74,69,74,1 +1,60,0,0,0,0,270,145,81,29.37,75,73,1 +1,53,0,0,0,0,219,141,105,26.86,62,60,1 +1,43,1,20,0,1,309,124,85,26.91,70,215,0 +0,45,1,7,0,0,199,124,78,21.94,85,78,0 +0,68,1,20,0,0,258,158,94,31.64,80,84,1 +0,57,0,0,0,0,199,117,83,24.76,95,82,0 +1,59,0,0,0,0,242,144,87.5,28.7,72,NA,1 +0,54,0,0,1,0,199,159,102,22.91,66,93,1 +0,44,1,10,0,0,223,96,59,23.82,67,87,0 +0,50,0,0,0,0,212,169,117,27.08,100,68,1 +0,39,1,20,0,0,206,102.5,65,19.8,80,85,0 +0,43,1,15,1,0,172,149,82,22.35,60,64,1 +1,42,1,NA,0,0,226,119,80,25.29,62,98,0 +0,36,0,0,0,0,211,100,61.5,22.19,60,73,0 +1,54,0,0,0,0,334,133.5,80,23.4,85,77,0 +0,41,0,0,0,0,197,113,70,23.78,65,90,0 +1,60,0,0,0,0,280,114,82,23.96,70,84,0 +0,63,0,0,0,0,246,151,88,25.94,69,73,1 +1,41,0,0,0,0,181,125,79,19.09,60,70,0 +1,52,0,0,0,0,224,128,82,23.96,70,68,0 +1,53,1,20,0,0,216,110,79,24.76,75,74,1 +0,37,1,15,0,0,222,110,71,18.3,80,67,0 +0,45,1,5,0,0,228,191.5,95.5,27.94,95,NA,1 +1,47,1,20,0,0,234,120,73,24.45,80,NA,0 +1,38,1,20,0,0,113,120,83.5,30.34,78,85,0 +0,40,0,0,0,0,212,110,70,22.98,85,85,0 +1,37,1,20,0,0,309,107.5,80,25.23,65,84,0 +1,65,0,0,0,1,238,122,81,23.95,67,150,0 +0,39,0,0,0,0,229,119,63.5,NA,76,83,0 +0,49,1,9,0,0,231,137,96.5,29.3,70,NA,1 +0,39,1,20,0,0,180,112.5,85,25.31,75,58,0 +0,41,0,0,0,0,317,149.5,93,35.42,68,87,1 +1,48,0,0,0,0,201,117.5,80,23.68,66,85,0 +1,50,0,0,0,0,167,159,95,25.2,75,87,1 +0,67,0,0,0,0,302,121,83,30.12,75,64,0 +1,41,1,30,0,0,228,113,82.5,25.67,67,70,0 +1,46,0,0,0,0,226,140,86,31.93,85,72,0 +0,43,0,0,0,0,232,126,73,20.43,72,75,0 +0,55,0,0,0,0,215,122,86,30.61,79,87,0 +1,55,1,20,0,0,214,110,71,24.24,75,72,0 +0,48,1,9,0,0,266,155,100,27.86,75,84,1 +1,57,1,NA,0,0,223,107.5,72.5,24.74,62,103,0 +0,48,0,0,0,0,234,144,90,29.34,72,70,1 +0,38,0,0,0,0,155,122,81,27.14,64,70,0 +0,48,0,0,0,0,240,123,80,24.57,66,74,0 +0,40,0,0,0,0,178,119,78.5,23.28,72,75,0 +0,57,0,0,0,0,254,182.5,97,27.38,77,72,1 +0,40,0,0,0,0,274,132.5,85.5,24.87,100,70,0 +0,64,0,0,0,0,266,166,90,23.33,82,87,1 +0,53,0,0,0,0,237,126,84,27.04,66,88,0 +1,46,1,9,0,0,260,137.5,94,32.37,78,78,1 +0,51,1,6,0,0,190,131.5,89,23.66,92,100,0 +0,40,0,0,0,0,188,123,76.5,28,58,76,0 +1,63,0,0,0,0,270,118,78,27.06,72,NA,0 +1,52,1,20,0,0,200,141,81.5,26.56,70,85,1 +0,41,1,20,0,0,167,147.5,87.5,32.52,75,80,1 +0,50,1,20,0,0,248,154.5,104,19.88,75,87,1 +1,36,0,0,0,0,176,125,85,25.88,70,83,0 +0,51,0,0,0,0,226,105,71,27.73,68,79,0 +1,40,1,19,1,0,233,122,87,24.91,65,69,1 +0,45,0,0,0,0,253,135,85,24.35,78,84,0 +0,40,0,0,0,0,170,142.5,95,36.79,100,62,1 +0,43,0,0,0,0,273,119,72,24.59,90,75,0 +1,54,0,0,0,0,207,146,98,23.63,65,91,1 +0,51,0,0,1,0,227,160,90,23.48,88,57,1 +1,38,0,0,0,0,150,109,75,21.43,64,67,0 +0,60,1,20,0,0,282,124,68,21.07,80,NA,0 +0,36,1,15,0,0,204,112,78,28.74,85,82,0 +0,52,0,0,0,0,215,180,108,37.02,60,89,1 +1,47,0,0,0,1,199,161,102,29.17,58,NA,0 +0,39,1,15,0,0,226,115,80,25.19,72,74,0 +1,58,0,0,0,0,333,139,96,28.38,75,78,1 +0,40,1,20,0,0,235,120,80,22.37,85,NA,0 +1,49,0,0,0,0,304,147,102,31.67,70,77,1 +0,52,0,0,0,0,350,175,85,30.99,92,63,1 +1,40,1,20,0,0,275,112.5,85,28.04,73,71,0 +0,55,1,5,0,0,315,123,77.5,26.21,75,84,0 +1,58,1,3,0,0,290,116.5,83,23.27,75,85,0 +1,48,0,0,0,0,251,112,77,30.28,80,88,0 +0,54,0,0,0,0,248,131,71,24.89,80,73,0 +1,60,1,19,0,0,231,122,78,28.09,80,67,0 +0,41,0,0,0,0,180,115,84,20.11,75,64,0 +0,40,1,3,0,0,NA,130,84,31.57,72,112,0 +0,43,1,1,0,0,256,129,86,25.89,96,72,0 +0,54,1,20,0,0,231,120,79,27.49,85,NA,0 +0,49,0,0,0,0,168,165,99,27.1,73,86,1 +1,53,0,0,0,0,207,102.5,72.5,26.5,72,95,0 +1,44,1,20,0,0,246,142,92,23.85,76,65,0 +0,67,0,0,0,0,NA,173,100,33.6,60,NA,1 +0,44,1,20,0,0,295,114,85,23.1,85,84,0 +0,42,1,15,0,0,216,119,75,27.01,70,73,0 +0,37,0,0,0,0,249,108,74,23.28,82,66,0 +0,53,1,9,0,0,304,119,72.5,22.91,53,NA,0 +1,45,0,0,0,0,221,105,70,23.95,52,83,0 +0,64,0,0,0,0,270,155,93,35.35,83,112,1 +0,36,1,20,0,0,214,107.5,66,22.02,80,103,0 +1,64,1,20,0,0,214,155,99,22.46,75,82,1 +0,54,1,2,0,0,213,144,82,29.45,63,72,0 +1,55,1,5,0,0,240,135,95,28.69,75,108,1 +1,59,1,3,0,1,230,182,102,25.91,66,147,1 +1,55,1,20,0,0,252,129,84,23.55,80,72,1 +0,60,0,0,0,0,354,130,82.5,26.76,65,79,0 +0,57,0,0,0,0,320,125,72.5,25.27,83,82,1 +0,42,0,0,0,0,193,137.5,82.5,30.55,63,69,0 +1,59,1,40,0,0,243,162,91,33,85,81,1 +0,58,0,0,0,0,268,170,104,24.51,70,75,1 +0,57,0,0,0,0,382,133,77,24.27,75,81,1 +0,52,0,0,NA,0,252,208,136,25.79,92,82,1 +0,58,0,0,0,0,241,143.5,85.5,23.96,96,NA,1 +1,51,1,10,0,0,231,110,72,21.19,75,81,0 +1,49,1,20,0,0,288,128,89,35.96,73,75,0 +0,64,1,10,0,0,NA,160,98,26.24,85,NA,1 +0,52,0,0,0,0,211,129,73,29.09,62,117,0 +1,41,1,20,0,0,240,166,71,35.53,90,57,1 +0,47,1,9,0,0,214,118,72,24.08,60,NA,0 +1,44,1,25,0,0,210,103,78,34.89,62,77,0 +1,40,1,30,1,0,287,141,86,27.42,80,94,1 +0,39,0,0,0,0,205,139.5,87,20.7,67,85,0 +0,38,1,20,0,0,195,116,72,24.45,75,90,0 +1,64,0,0,0,0,188,191,106,37.38,82,84,1 +1,44,1,30,0,0,240,134,88,31.62,70,61,0 +1,53,0,0,0,0,241,113,84,28.27,62,73,0 +0,43,0,0,0,0,308,110,70,24.83,55,83,0 +0,53,0,0,0,0,213,133,89,17.89,75,73,0 +0,60,0,0,0,0,232,152.5,85,23.03,85,123,1 +0,48,1,20,0,0,211,130,73,19.72,82,NA,0 +0,48,0,0,0,0,225,132,80,21.35,60,74,0 +0,50,0,0,0,0,312,165,90,30.47,72,83,1 +0,45,1,20,0,0,280,116,69,26.45,99,92,0 +0,56,1,30,0,0,288,123,70,18.62,72,96,0 +1,61,1,5,0,0,222,139,67,22.01,92,72,0 +1,44,0,0,0,0,267,131,79,30.32,70,79,0 +0,43,0,0,0,0,202,121.5,86.5,20.82,92,77,0 +0,59,1,35,0,0,345,182.5,103,31.52,83,76,1 +0,41,0,0,0,0,295,118,83,29.01,75,75,0 +0,42,1,10,0,0,173,105,70,21.98,60,79,0 +1,61,1,20,0,0,215,114,72.5,25.86,65,61,0 +1,61,0,0,0,0,193,108.5,71,31.31,60,NA,0 +0,43,0,0,0,0,260,127,79.5,26.01,63,77,0 +0,53,0,0,0,0,342,144,96,32.6,75,NA,1 +0,47,1,4,0,0,243,121,61,20.32,84,110,0 +1,55,0,0,0,0,246,147,86.5,24.8,75,76,1 +1,38,0,0,0,0,205,125,85,28.03,60,84,0 +1,46,1,20,0,0,219,118,79,24.17,70,90,0 +0,66,0,0,NA,1,203,205,83,28.27,75,118,1 +0,64,0,0,0,0,262,160,82,21.11,108,90,1 +0,40,1,5,0,0,155,120,73.5,21.32,65,78,0 +0,60,0,0,0,0,254,114,78,33.88,94,84,0 +0,63,0,0,0,1,150,152,88,36.54,72,170,1 +0,64,0,0,0,0,255,147.5,93,25.16,95,84,1 +1,45,0,0,0,0,279,143.5,90,21.07,90,87,0 +1,47,1,20,0,0,210,131,74,18.88,60,86,0 +1,54,0,0,0,0,226,122.5,77.5,27.93,92,71,0 +0,42,1,20,0,0,171,111,81,29.47,75,77,0 +0,52,0,0,0,0,240,139,80,22,68,NA,1 +1,46,0,0,0,0,220,119,80,25.86,75,95,0 +0,55,0,0,0,0,208,190,130,56.8,90,86,1 +0,40,1,20,0,0,250,104,74,18.75,90,NA,0 +1,44,1,20,0,0,211,145,88,23.39,60,79,0 +1,52,1,30,0,0,248,119,82,26.55,65,100,0 +0,65,0,0,0,0,344,120,75,25.41,87,98,0 +0,51,0,0,0,0,285,151.5,79,26.91,84,76,1 +0,42,0,0,0,0,158,127.5,90,31.75,120,92,0 +1,42,1,20,0,0,272,125.5,80.5,25.35,66,71,0 +1,58,1,15,0,0,175,83.5,58,29.66,95,115,0 +0,40,1,10,0,0,209,96,67,23.46,52,70,0 +1,41,1,30,0,0,292,152,73,25.21,75,112,1 +0,57,0,0,1,1,318,161,90,38.11,68,112,1 +1,55,0,0,0,0,222,129,86.5,33.76,95,92,0 +0,65,0,0,1,0,230,159,87,22.91,70,65,1 +0,59,0,0,0,0,364,142,84,26.24,67,70,0 +1,51,1,15,0,0,339,137.5,81,24.22,80,85,0 +1,36,1,20,0,0,242,115,75,25.64,83,83,0 +1,63,1,10,0,0,230,152.5,88,24.1,72,74,1 +1,37,1,30,0,0,179,131.5,81,24.99,64,68,0 +1,51,1,20,0,0,215,115,69,25.7,68,77,0 +1,52,0,0,0,0,210,128,87,26.25,67,61,0 +0,47,1,9,0,0,250,98,73,24.39,60,88,0 +0,56,0,0,0,0,307,118,80,29.67,60,70,0 +0,39,0,0,0,0,253,127,68,23.29,85,75,0 +0,68,0,0,0,0,242,146.5,71,25.21,100,96,0 +0,52,0,0,0,0,291,150,94,28.68,67,74,1 +0,65,0,0,0,0,295,210,135,24.73,72,93,1 +1,47,1,25,0,0,173,117.5,77.5,20.23,68,75,0 +0,54,0,0,0,0,248,131.5,83,26.84,67,63,0 +1,67,1,10,0,0,194,171,84,21.64,75,88,1 +1,63,0,0,0,0,204,158,109,28.4,75,71,1 +0,58,0,0,0,0,220,121,75,25.33,73,76,0 +0,40,0,0,0,0,159,142,90.5,22.31,100,NA,0 +0,63,0,0,0,0,246,116,69,23.44,65,78,0 +1,58,1,20,0,0,207,110,80,23.55,78,78,0 +0,36,1,20,0,0,177,115,63.5,22.54,71,73,0 +0,46,0,0,0,0,208,122,76,18.4,75,70,0 +1,64,1,20,0,0,259,115,81,20.09,72,78,0 +0,41,0,0,0,0,180,124,75.5,24.2,68,NA,0 +0,43,1,15,0,0,315,132.5,76.5,31.54,95,NA,0 +0,56,0,0,0,0,262,150,89,40.21,75,86,1 +0,68,1,20,0,0,322,148,95,20.98,95,72,0 +0,48,1,5,0,0,172,114,80,21.33,60,NA,0 +0,63,0,0,0,0,219,124,75,28.57,66,76,0 +0,49,1,10,0,0,288,99,60,22.19,77,76,0 +1,40,1,25,0,0,335,136.5,84,23.6,85,76,0 +0,46,0,0,0,0,192,122,83,23.99,78,106,0 +0,51,0,0,0,0,198,128,90,26.32,70,75,0 +1,44,1,15,0,0,274,150,95,25.46,75,70,1 +0,67,0,0,1,0,228,144,85,27.59,65,75,1 +0,38,0,0,0,0,215,106.5,75,23.82,60,67,0 +1,43,1,20,0,0,263,132,90,28.85,72,71,0 +1,46,1,60,0,0,285,121,82,27.62,70,79,0 +1,49,1,60,0,0,213,123,75,24.84,70,NA,0 +1,41,0,0,0,0,178,135,80,26.91,75,NA,0 +1,41,1,3,0,0,309,113,74,25.4,75,64,0 +0,54,0,0,0,0,341,155,105,27.01,63,62,1 +1,41,1,15,0,0,265,130,80,26.58,84,63,0 +0,48,1,10,0,0,195,121,78,26.27,75,80,0 +1,62,0,0,0,0,240,152,95,25.37,63,70,1 +0,58,0,0,0,0,282,143,76,27.87,79,92,0 +1,67,1,40,0,0,216,148,70,32.63,90,103,1 +1,38,1,20,0,0,215,110,80,NA,100,73,0 +0,41,1,7,0,0,260,101,68,22.49,80,77,0 +1,37,1,20,0,0,205,142,80,27.93,100,103,0 +0,62,1,3,0,0,286,123,77,20.56,59,86,0 +1,44,1,20,0,0,225,130,77.5,21.19,92,82,0 +0,48,0,0,0,0,275,177,101,25.22,75,82,1 +0,44,1,9,0,0,231,103,73,22.02,72,83,0 +0,42,0,0,0,0,212,116,68,21.49,72,79,0 +0,48,1,20,0,0,182,121,72,26.39,76,NA,0 +0,40,1,5,0,0,220,113,78,24.29,68,NA,0 +1,46,1,20,0,0,238,140.5,92.5,26.97,75,83,1 +0,46,1,20,0,0,211,120,84,22.53,94,87,0 +1,56,1,20,0,0,300,165,112,23.68,86,78,0 +0,40,1,15,0,0,232,140,92,26.56,75,73,1 +1,53,1,30,1,0,190,141,115,21.01,115,86,1 +0,63,0,0,0,0,180,170.5,100.5,27.69,86,63,1 +1,41,1,20,0,0,236,127,84,31.12,80,83,1 +1,55,1,3,0,0,211,142,82.5,19.81,90,70,1 +1,45,1,20,0,0,212,119,72,22.33,60,91,0 +0,68,0,0,NA,0,258,139,74,26.58,85,75,1 +0,43,1,10,0,0,249,108,76,27.49,80,76,0 +0,45,1,15,0,0,200,117.5,83.5,23.68,77,73,0 +0,38,0,0,0,0,159,132,85,28.21,69,76,0 +1,40,1,20,0,0,228,131,80,26.77,64,74,0 +0,40,1,20,0,0,187,107,74,22.37,60,67,0 +1,43,1,20,0,0,275,111,76,23.95,68,65,0 +1,58,1,15,0,0,264,156,86,26.05,92,103,0 +0,45,1,10,0,0,210,121,82,23.08,85,71,0 +1,59,1,1,0,0,232,108,73,24.92,65,81,0 +0,39,0,0,0,0,185,109,78,29.68,63,93,0 +0,64,0,0,0,0,305,126.5,67,25.77,67,66,0 +1,44,0,0,0,0,229,132,94,34.39,110,80,0 +1,39,1,20,0,0,285,120,77.5,28.33,95,79,0 +0,52,0,0,0,0,325,119.5,86,24.56,64,NA,0 +0,47,1,10,0,0,205,107,68,23.29,90,108,0 +0,45,0,0,0,0,175,114,74,30.53,72,105,0 +1,45,1,20,1,0,238,175,114,31.14,78,70,1 +0,41,1,9,1,0,180,114,70,22.41,92,NA,1 +1,50,1,35,0,0,293,150,85,26.09,67,68,0 +0,54,0,0,0,0,208,138,78,30.47,67,73,0 +0,41,0,0,0,0,170,113.5,65.5,31.71,73,93,0 +0,44,0,0,0,0,244,132.5,87,24.17,58,86,0 +0,44,0,0,0,0,205,109,73,17.48,75,57,0 +1,45,1,20,0,0,234,126,80,23.14,72,88,0 +1,46,1,9,0,0,255,113.5,72.5,23.22,60,NA,0 +1,41,0,0,0,0,197,134,87,25.48,75,75,0 +0,41,1,5,0,0,209,107,65,27.27,84,87,0 +0,58,1,20,0,0,231,165,94.5,27.02,100,80,1 +1,65,0,0,0,0,253,111,60,24.12,60,69,0 +0,44,0,0,0,0,226,123,82,24.67,72,70,0 +0,41,0,0,0,0,228,93,71,31.57,50,85,0 +0,60,0,0,0,0,261,123.5,79,29.28,70,103,0 +0,59,0,0,0,0,267,190,90,26.23,75,NA,1 +0,40,1,9,0,0,240,115,72,18.82,80,68,0 +0,42,0,0,0,0,233,127,82,30.22,70,NA,0 +0,56,0,0,0,0,280,101,71,28.22,79,67,0 +0,52,0,0,0,0,260,171,118,28.33,69,80,1 +1,54,0,0,0,0,235,132,87,26.13,65,75,0 +0,42,0,0,0,0,278,118.5,72,21.99,72,78,0 +1,42,1,20,0,0,238,133,88,28.84,80,58,0 +1,43,0,0,1,0,210,181,97.5,21.83,75,55,1 +0,49,0,0,0,0,239,143,93,28.38,75,87,1 +1,47,1,20,0,0,344,102.5,71,27.73,65,80,0 +1,53,1,43,0,0,193,142.5,100,24.15,82,69,1 +0,62,0,0,0,0,281,126,85.5,23.29,65,63,0 +0,55,0,0,1,1,279,165,105.5,32.51,73,87,1 +0,41,1,1,0,0,189,113.5,61,23.08,55,73,0 +0,38,1,5,0,0,179,116.5,72.5,21.49,70,76,0 +0,50,1,30,0,0,243,128,76,25.65,69,80,0 +1,44,1,20,0,0,230,138,98,25.12,75,93,1 +1,55,1,6,0,0,274,148,94,28.55,62,65,1 +0,53,0,0,0,0,268,156,100,26.73,85,69,1 +0,54,0,0,0,0,220,142.5,83.5,25.09,72,84,1 +0,36,1,15,0,0,180,105,60,25.97,102,NA,0 +1,47,1,20,0,0,286,148,98,29.98,80,93,1 +1,51,1,7,0,0,133,138,78,16.98,80,65,1 +0,60,0,0,0,0,295,149,103.5,22.69,80,52,1 +1,49,0,0,1,0,280,166,98,23.03,70,72,1 +1,43,0,0,0,0,367,141,82.5,25.62,92,90,1 +1,57,0,0,0,0,207,111,80,37.15,63,70,0 +0,61,0,0,0,0,224,155,71,25.98,75,86,1 +0,46,0,0,0,0,284,147,82,25.6,80,NA,0 +0,47,1,1,0,1,160,197,109,34.91,82,320,1 +0,62,0,0,0,1,313,164,94,27.4,70,81,1 +1,62,0,0,0,0,191,156,91,31.2,68,75,1 +0,35,0,0,0,0,219,116,74,21.63,75,68,0 +0,48,1,20,0,0,NA,117.5,67.5,28.62,75,68,0 +1,51,1,15,0,0,212,146,89,24.49,100,132,0 +1,42,1,20,0,0,241,118,85,30.03,68,74,0 +0,40,0,0,0,0,215,110,70,19.64,70,87,0 +0,44,1,30,0,0,188,122.5,67.5,23.13,94,85,0 +0,46,0,0,0,0,214,144,79,23.62,96,80,1 +0,40,1,9,0,0,193,105,60,22.54,75,85,0 +1,40,1,20,0,0,201,121.5,76.5,29.38,74,94,0 +1,48,1,15,0,0,214,114,80,26.27,95,99,0 +0,43,1,20,0,0,208,119,69,19.48,67,73,0 +1,48,1,20,0,0,194,102.5,69,18.55,79,83,0 +0,43,0,0,0,0,230,116,86,27.78,62,78,0 +1,38,1,20,0,0,265,123,86,28.88,85,80,0 +1,48,0,0,0,0,263,114,80,25.14,80,77,0 +1,58,0,0,0,0,279,181,74,22.49,66,65,1 +0,51,0,0,0,0,304,132,80,25.15,85,106,1 +1,42,1,40,0,0,218,129,90,23.22,70,73,1 +1,46,1,43,0,0,272,145,88,28.12,103,65,1 +1,48,1,20,0,0,285,116,81,23.1,100,58,0 +0,55,1,1,0,0,240,107.5,70,18.06,71,140,0 +0,59,0,0,1,0,282,135,87,28.96,72,NA,1 +0,41,0,0,0,0,232,117.5,77.5,20.62,53,75,0 +0,57,1,20,0,0,252,139,82,26.36,84,70,0 +1,51,0,0,0,0,237,135,87.5,24.87,65,63,0 +1,42,1,20,0,0,220,131,90,24.21,62,79,1 +0,41,0,0,0,0,177,108,73,24.73,80,72,0 +0,45,1,20,0,0,230,138,85,22.54,66,67,0 +0,61,0,0,0,0,219,102,59,18.14,72,62,0 +0,43,1,1,0,0,185,125,84,23.18,75,55,0 +1,54,0,0,0,0,230,126,93,25.36,80,84,1 +0,40,1,50,NA,0,220,124,79,20.7,90,57,0 +0,59,0,0,1,0,297,198,108,28.06,85,109,1 +1,40,1,15,0,0,203,123,82,24.74,75,78,0 +1,60,0,0,1,0,173,135,97.5,30.71,63,86,1 +1,49,1,25,0,0,282,134,79,26.87,67,78,0 +0,52,0,0,0,0,220,163,87,25.12,100,94,1 +1,51,1,40,0,0,264,119,82,28.55,85,63,0 +0,49,0,0,0,0,257,115,75,25.61,72,74,0 +0,52,0,0,0,0,208,141,85,24.85,75,68,0 +1,42,1,20,0,0,184,114.5,76,29.89,66,59,0 +1,44,1,15,0,0,237,124,83,27.17,70,88,0 +1,50,1,9,0,0,206,140,92,28.21,85,NA,0 +0,50,1,30,0,0,308,145.5,96,25.61,72,NA,1 +0,54,0,0,0,0,262,113.5,80,26.42,75,67,0 +1,48,1,20,0,1,172,131,79,35.12,75,108,0 +1,52,1,20,0,0,240,135,82,27.73,100,87,0 +0,42,0,0,0,0,263,150,88,23.68,96,78,1 +0,50,0,0,0,0,280,126,76,21.82,65,74,0 +1,46,1,40,0,0,165,107,82,24.67,60,77,0 +1,59,1,40,0,0,188,111,72,21.48,75,44,1 +1,59,0,0,0,1,314,135,77.5,22.17,75,170,0 +1,50,1,30,0,0,320,190,110,25.45,90,71,1 +0,39,0,0,0,0,153,107,82,20.99,75,82,0 +0,48,0,0,0,0,186,113,78,22.98,64,NA,0 +1,58,1,20,0,0,255,136,85.5,25.33,82,62,0 +0,47,0,0,0,0,205,106,75,23.44,75,97,0 +0,57,0,0,0,0,163,112,71,22.66,70,78,0 +0,63,0,0,0,0,281,125,80,21.35,75,99,0 +0,43,0,0,0,0,194,122.5,82,35.16,75,80,0 +1,56,0,0,1,0,226,175.5,113,30.77,60,70,1 +1,50,1,20,0,0,163,96.5,72.5,20.72,75,77,0 +1,47,1,10,0,0,214,132,95,24.23,70,77,1 +0,48,1,20,0,0,215,114,64,21.51,74,64,0 +1,56,0,0,0,0,212,130,79,27.73,64,100,0 +1,40,1,20,0,0,152,119,86,23.35,75,66,0 +1,63,1,43,0,0,253,172,82,24.19,66,137,1 +0,52,0,0,0,0,280,118,71,21.84,96,62,0 +0,61,0,0,0,0,NA,185,121,35.22,80,NA,1 +0,59,0,0,0,0,240,149,88,27.48,80,82,1 +0,42,1,20,0,0,228,122,85,23.99,69,68,0 +1,41,1,20,0,0,264,126.5,82,23.96,75,78,0 +0,48,1,3,0,0,247,142.5,86.5,24.87,53,68,1 +1,49,1,20,0,0,291,160,99,29.91,85,88,1 +1,43,1,20,0,0,175,103,64.5,17.81,86,78,0 +0,53,0,0,0,0,280,135,87,27.17,80,80,0 +1,49,1,17,0,0,211,128,89,31.07,75,76,0 +0,67,0,0,0,0,260,140,88,24.67,55,65,1 +1,42,1,15,1,0,222,143,92,27.38,78,89,1 +0,59,0,0,1,0,234,181,107,39.4,80,90,1 +1,46,1,20,0,0,238,163.5,102,28.65,73,100,1 +1,44,0,0,0,0,253,152.5,87.5,26.84,56,NA,0 +0,47,0,0,0,0,205,122,78,23.78,67,83,0 +0,36,1,43,0,0,201,124,73,25.25,95,100,0 +0,51,0,0,0,0,292,166,89,27.51,68,88,1 +0,49,0,0,0,0,189,102,66.5,23.88,70,70,0 +0,54,0,0,0,0,241,103,66,22.73,85,66,0 +1,49,0,0,0,1,248,130.5,82,27.29,52,254,0 +1,67,1,2,0,0,144,113,62,22.9,58,69,0 +1,62,0,0,0,1,346,102.5,66.5,17.17,80,394,0 +0,38,1,9,0,0,224,90,70,18.18,75,57,0 +0,45,1,30,0,0,181,138.5,90,26.32,90,NA,1 +0,50,0,0,0,0,250,109,70,20.74,75,77,0 +0,45,0,0,0,0,290,124,72.5,24.24,92,87,0 +1,48,1,30,0,0,178,132.5,73,24.67,80,70,0 +1,58,1,40,0,0,231,171,95,26.11,85,77,1 +0,36,0,0,0,0,203,112.5,73.5,24.47,70,73,0 +0,55,0,0,0,0,270,117,71,23.79,71,72,0 +0,40,0,0,0,0,NA,119,81,24.6,75,NA,0 +0,57,1,20,0,0,174,120,62,25.13,95,77,0 +1,40,1,10,0,0,250,109,78,25.75,65,NA,0 +0,41,1,20,0,0,190,135,81,24.38,65,NA,0 +1,43,1,20,0,0,206,133.5,89.5,21.73,86,89,0 +0,63,0,0,0,0,179,149,89,40.81,92,77,1 +0,59,1,9,0,0,229,127.5,76,23.65,74,70,0 +0,67,0,0,1,1,303,204,96,27.86,75,394,1 +0,42,1,20,0,0,223,129,79,28.04,98,100,0 +1,52,0,0,0,0,340,114,83,31.02,78,80,0 +0,39,0,0,0,0,252,125,86,20.74,75,93,0 +0,42,0,0,0,0,183,120,76,21.12,100,72,0 +0,43,1,15,0,0,230,118,70.5,26.24,100,67,0 +0,52,0,0,0,0,263,132.5,87,30.42,75,64,0 +0,45,0,0,0,0,210,120,72,22.01,75,93,0 +1,61,0,0,0,0,243,142,89,27.3,65,67,1 +0,56,0,0,0,0,192,122,82.5,28.61,68,58,0 +1,43,1,25,0,0,296,137,90,23.97,72,97,0 +1,56,1,20,0,0,228,151.5,103,23.58,65,66,1 +1,55,1,45,0,0,345,134,89,27.38,72,60,0 +1,46,1,20,0,0,273,132.5,69,26.83,120,88,0 +1,43,1,30,0,0,252,112,78,24.25,90,65,0 +1,43,0,0,0,0,206,107.5,73.5,24.17,60,71,0 +1,64,1,20,0,0,225,120,75,NA,70,94,0 +0,50,0,0,0,1,258,127,80,24.1,75,124,0 +1,48,1,20,0,0,230,140.5,89,23.34,66,80,1 +0,49,0,0,0,0,254,142,87,27.94,60,63,1 +1,46,1,15,0,0,212,132,92,22.08,63,NA,1 +0,57,1,43,0,0,283,207.5,118,38.61,100,83,1 +1,51,0,0,0,0,218,115,75,25.62,82,62,0 +0,40,1,30,0,0,280,115,81,21.32,62,84,0 +1,51,1,30,0,0,240,127,80,28.85,70,67,0 +1,41,1,20,0,0,163,102,59.5,22.27,67,82,0 +0,59,0,0,0,0,254,181,101,24.67,76,68,1 +0,61,0,0,0,0,295,191,97,31.27,62,90,0 +0,43,1,20,0,0,276,138,88,20.4,82,70,0 +0,65,0,0,0,0,225,145,91,29.8,80,83,1 +0,42,0,0,0,0,176,136,87,30.91,80,73,0 +1,41,1,20,0,0,217,110,79,21.27,100,95,0 +0,55,0,0,0,0,328,106,77,29.65,75,NA,0 +1,56,0,0,0,0,220,113,83,25.12,58,86,0 +0,56,0,0,NA,0,220,126.5,74.5,28.3,82,80,0 +1,48,1,43,0,0,210,162.5,87.5,24.32,95,NA,1 +0,56,0,0,0,0,287,150.5,94,26.01,75,99,1 +0,51,0,0,0,0,250,148.5,90,24.58,80,NA,0 +0,59,0,0,0,0,279,132,88,26.48,78,88,0 +1,54,0,0,0,0,217,116,72,22.49,80,77,0 +0,47,1,43,0,0,218,147,81,20.39,75,NA,1 +0,45,0,0,0,0,254,104,73,19.46,60,77,0 +0,53,0,0,0,0,328,121,70,30.75,90,77,0 +0,54,0,0,0,0,306,195,110,32.1,72,68,1 +0,59,0,0,0,0,281,130.5,86,25.11,80,83,0 +1,41,1,40,0,0,260,137.5,80,26.89,75,55,0 +0,47,1,5,0,0,237,110,77,25.62,100,83,0 +0,65,0,0,0,0,205,167.5,92.5,24.72,87,NA,1 +0,44,1,20,0,0,160,131,81.5,25.71,75,70,0 +1,54,0,0,0,0,180,147.5,100,25.11,70,70,1 +0,55,0,0,0,0,180,165,88,22.57,68,77,1 +1,53,1,15,0,0,260,142,88,23.65,96,77,1 +1,52,0,0,0,1,258,177,111,30.38,80,270,1 +1,51,1,20,0,0,274,108,75,23.6,70,68,0 +0,49,0,0,0,0,228,124,72,21.18,74,88,0 +1,68,1,15,0,0,193,145,67,23.13,75,72,0 +1,39,1,20,0,0,202,108,74,25.51,64,104,0 +1,54,0,0,0,0,248,155,92.5,29.86,85,66,1 +0,44,1,3,0,0,244,105,60,23.24,76,NA,0 +1,46,1,43,0,0,237,105,72.5,33.49,67,79,0 +0,49,1,20,1,0,262,147.5,97.5,24.96,60,67,1 +0,46,0,0,0,0,229,127.5,80,22.34,84,77,0 +0,63,1,9,0,0,219,162,91,33.66,70,NA,1 +0,51,1,15,0,0,352,136.5,87,25.79,73,67,0 +1,55,1,20,0,0,280,134,85.5,29.86,80,75,0 +0,61,0,0,0,0,270,174.5,101.5,29.87,80,76,1 +1,38,1,20,0,0,220,126,88,24.46,77,74,0 +1,36,1,20,0,0,252,126,77,25.23,75,63,0 +1,50,1,30,0,0,225,133.5,86,29.38,79,106,0 +1,42,1,20,0,0,234,125,86,28.09,70,70,0 +0,45,0,0,0,0,258,148.5,88,23.46,85,90,1 +0,48,1,9,0,0,280,105,85,25.5,85,79,0 +1,50,1,20,0,0,233,158,88,28.26,68,94,1 +0,52,0,0,0,0,265,130,84,27.09,63,69,0 +1,50,1,15,1,0,258,198,106,26.73,102,73,1 +1,58,1,20,0,0,241,152.5,105,25.18,92,85,1 +0,57,0,0,1,0,432,153,85,26.13,98,75,1 +0,41,0,0,0,0,188,142.5,87.5,39.21,70,NA,1 +0,55,0,0,0,0,326,144,81,25.71,85,NA,1 +1,44,1,40,0,0,189,130,90,22.33,90,64,0 +0,40,1,3,0,0,230,107.5,75,26.38,75,76,0 +0,58,1,5,0,0,240,150,84,26.85,75,94,1 +0,45,0,0,0,0,252,160,105,31.72,65,83,1 +0,38,1,2,0,0,172,98,53,22.18,68,82,0 +1,61,0,0,0,0,239,122,83,28.85,62,94,1 +0,57,0,0,0,0,245,134,84,29.28,100,NA,0 +0,62,0,0,0,0,317,126,75,23.29,71,86,0 +0,50,0,0,0,0,229,121,85.5,23.09,63,75,0 +1,36,1,40,0,0,200,103,67.5,30.82,67,72,0 +1,44,0,0,0,0,234,135,88,25.65,52,83,0 +1,44,0,0,0,0,260,127,80,31.69,69,73,1 +1,44,1,40,0,0,232,125,86,23.23,72,80,0 +1,51,0,0,0,0,200,115,76,31.04,78,NA,1 +0,55,1,20,0,1,216,125,80,27.18,86,244,0 +1,48,1,20,0,0,258,150,105,25.94,83,60,1 +1,64,0,0,0,0,185,94,62,26.11,70,68,0 +0,53,1,20,0,0,181,163.5,87,34.69,80,71,1 +0,37,0,0,0,0,217,126,80,25.91,75,62,0 +0,49,1,20,0,0,239,123,72,23.35,62,NA,0 +1,40,1,70,0,0,210,132,86,31.57,98,80,1 +1,45,1,20,0,0,264,118.5,81,26.35,75,90,0 +1,39,0,0,0,0,188,105,65,22.85,63,76,0 +0,55,0,0,0,0,204,131,87,24.68,63,70,0 +0,57,1,20,0,0,246,160,92.5,30.74,84,76,1 +1,42,0,0,0,0,191,118,80,24.98,62,63,0 +1,52,1,20,0,0,200,131,94,26.77,70,82,1 +0,35,1,5,0,0,165,106,64,19.14,68,70,0 +0,39,0,0,0,0,216,126,86,22.72,90,70,0 +0,54,0,0,0,0,195,122,88.5,24.11,76,67,0 +0,56,1,20,0,0,240,125,79,27.38,80,82,0 +0,49,1,20,0,0,273,147,89,24.26,85,62,0 +1,39,1,9,0,0,273,148,103,28.62,75,74,0 +1,53,1,NA,0,0,276,130,86,24.21,58,82,0 +0,59,0,0,0,0,250,120.5,80.5,27.59,80,75,1 +0,52,0,0,0,0,300,137,79,25.4,86,73,0 +1,45,1,15,0,0,266,109,70,23.72,75,71,0 +1,53,1,20,0,0,239,122,82,29.4,70,84,0 +0,66,0,0,0,0,273,197,91,23.22,95,80,1 +0,41,1,17,0,0,261,147.5,97,31.65,75,73,1 +0,45,0,0,0,0,282,115,71,22.54,60,96,0 +0,46,1,18,0,0,290,131,84,18.28,75,68,0 +0,41,1,3,0,0,232,125,80,25.38,72,79,0 +0,59,0,0,0,0,313,186.5,99,25.65,72,84,1 +0,44,1,10,0,0,310,141,76,20.52,52,90,0 +0,56,1,5,0,0,285,124,80,24.54,52,106,0 +0,57,1,NA,0,0,229,115,69,24.43,80,93,0 +1,53,0,0,0,0,225,108.5,73,26.55,54,73,0 +0,34,0,0,0,0,226,112.5,77.5,24.99,100,72,0 +1,38,1,10,0,0,226,142,93,29.76,105,63,0 +1,44,0,0,0,0,195,114,79,25.01,60,76,0 +0,45,0,0,0,0,271,121,77,23.96,68,82,0 +1,57,0,0,0,0,287,149,86,26.33,62,65,1 +1,61,0,0,0,0,257,124.5,80,23.84,64,76,0 +0,38,1,3,0,0,177,126,80,23.84,90,79,0 +1,57,0,0,0,0,235,123,78,28.53,60,74,0 +0,47,0,0,0,0,266,107,77,30.61,75,64,0 +1,39,1,15,0,0,208,135,80,20.71,70,NA,0 +0,54,0,0,0,0,192,130,87,27.76,69,NA,0 +1,58,0,0,0,0,239,147,98,26.51,65,68,1 +0,69,0,0,0,0,215,164,80,17.23,100,NA,1 +0,60,1,3,0,0,270,130,72.5,20.84,75,102,0 +0,63,0,0,0,0,241,153,89,32.57,65,75,1 +0,50,1,9,0,1,210,134,80,18.26,64,NA,0 +1,56,0,0,0,0,243,128.5,75,27.68,80,89,0 +0,54,0,0,0,0,278,127.5,83,23.08,63,78,0 +0,57,1,20,1,0,315,193,109,27.99,70,74,1 +0,48,1,5,0,0,150,175,110,26.4,100,NA,1 +0,44,1,8,0,0,351,106,65,25.34,95,69,0 +1,60,1,20,0,0,174,164,113,18.64,65,93,1 +1,41,1,20,0,0,196,154,99,23.46,82,56,1 +0,50,1,20,0,0,275,123,83,24.29,90,64,0 +0,49,0,0,0,0,254,131,92,29.22,75,65,1 +1,50,0,0,0,0,239,148.5,100,27.83,80,90,1 +1,61,1,20,0,0,220,215,129,24.69,92,NA,1 +0,52,0,0,0,0,280,127.5,81.5,33.9,82,70,0 +1,33,0,0,0,0,165,136,75,24.95,88,90,0 +1,46,0,0,0,0,328,130,86.5,27.17,65,82,1 +1,52,1,20,0,0,243,116,64,23.78,69,70,0 +1,45,1,5,0,0,217,130,82,26.95,50,85,0 +0,46,1,30,0,0,196,114,75,21.01,60,69,0 +1,63,1,6,0,0,256,138.5,77.5,28.85,80,84,1 +0,41,1,5,0,0,192,123,72,19.16,62,90,0 +0,41,0,0,0,0,193,127,83,21.49,60,80,0 +1,52,0,0,0,0,214,98,67,23.43,68,90,0 +1,46,0,0,0,0,297,133,92,25.98,69,64,0 +0,63,0,0,0,0,184,196,101,28.27,86,82,1 +1,37,0,0,0,0,257,105,70,31.47,75,80,0 +0,43,1,10,0,0,269,139,96,24.38,77,71,0 +0,67,0,0,0,0,223,111,73,27.89,90,63,0 +0,42,0,0,0,0,245,117.5,90,22.65,85,96,0 +0,51,0,0,0,0,177,141,92,29.64,72,130,1 +0,63,0,0,0,0,289,158,80,32.66,75,84,1 +1,36,0,0,0,0,163,111,73,30.18,70,90,0 +1,51,0,0,0,0,260,127.5,92,32.98,56,93,0 +1,43,0,0,0,0,177,147.5,92,24.81,64,90,1 +0,40,1,15,0,0,220,131.5,82.5,24.35,80,78,0 +1,49,1,9,0,0,278,152,93,29.76,64,63,1 +1,57,1,30,0,0,167,127,69,28.13,83,107,0 +1,39,0,0,0,0,216,122.5,77,24.06,60,67,0 +0,58,0,0,1,0,274,159,90,28.4,72,81,1 +1,54,0,0,0,0,165,151,100,23.74,92,NA,1 +0,61,0,0,0,0,300,150.5,89,NA,68,72,1 +1,53,1,20,0,0,204,152,74,24.8,78,89,1 +0,60,0,0,0,0,298,133,89,25.09,83,81,1 +1,40,0,0,0,0,192,141.5,108.5,36.01,76,78,1 +0,49,1,NA,0,0,214,172,111,40.51,80,70,1 +0,52,1,20,0,0,254,114,80,16.59,75,74,0 +1,57,1,30,0,0,249,139,83,23.81,85,76,1 +0,46,1,30,0,0,303,115,78,22.5,70,67,0 +0,42,1,43,0,0,290,136,88,34.71,110,NA,0 +0,40,0,0,0,0,230,127,72,29.62,85,70,0 +0,54,0,0,0,0,252,146,87,33.11,90,100,1 +0,51,0,0,0,0,262,150.5,95,30.79,75,77,1 +1,54,1,30,0,0,177,162.5,99.5,22.97,65,93,1 +0,51,0,0,0,0,236,115,71,23.48,80,84,0 +0,39,0,0,0,0,337,120,79.5,23.07,68,77,0 +0,54,0,0,0,0,243,147.5,86.5,26.42,64,NA,0 +0,47,1,NA,0,0,321,132,88,28.14,90,74,0 +1,63,0,0,0,0,248,130,73.5,23.5,98,83,1 +1,39,1,NA,0,0,285,121,82,27.62,85,65,0 +0,40,1,3,0,0,256,124,79,24.23,80,81,0 +1,45,1,3,0,0,NA,126,85,28.24,72,NA,0 +0,63,0,0,0,0,NA,127.5,80,32.78,73,NA,0 +1,47,1,15,0,1,210,163.5,97,28.24,105,183,1 +1,42,1,5,0,0,184,149,95,28.77,80,94,1 +1,38,1,30,0,0,275,117.5,85,28.94,72,74,0 +1,44,0,0,0,0,238,132,86,27.22,75,85,0 +0,45,0,0,0,0,195,129.5,83,25.74,77,74,0 +0,53,1,30,0,0,268,163,97,27.88,80,65,1 +0,43,1,15,0,0,205,128.5,96,22.34,100,NA,0 +1,54,1,6,0,0,260,116,86,24.05,85,85,0 +0,48,1,9,0,0,248,114.5,70,27.69,95,75,0 +0,38,1,15,0,0,267,179.5,97,20.44,76,67,1 +0,54,0,0,0,0,240,125,87,28.76,76,76,0 +0,62,0,0,0,0,224,121.5,77.5,28.66,75,NA,0 +0,51,0,0,0,0,198,142.5,80,23.86,76,100,1 +1,39,0,0,0,0,221,126,80,23.9,64,80,0 +1,46,1,20,0,0,182,120,78,20.23,75,85,0 +0,44,0,0,0,0,213,126,76,19.05,85,84,0 +1,48,0,0,0,0,274,134,84,31.78,85,80,0 +0,42,0,0,0,0,260,118.5,74.5,22.19,60,75,0 +1,52,0,0,0,0,222,125,76,25.23,60,77,0 +0,62,0,0,0,0,326,160,90,33.7,72,84,1 +1,54,1,3,0,0,279,155,105,26.47,78,66,1 +0,64,0,0,0,0,280,133,82,28.92,54,65,0 +1,65,0,0,0,0,272,137,81,25.74,90,97,0 +0,49,0,0,0,0,286,144,91,29.35,65,67,0 +0,60,1,15,0,0,254,177,101,23.27,92,79,1 +0,70,0,0,1,0,231,136,84,31.78,60,95,1 +1,44,1,9,0,0,273,114,83,27.33,70,65,0 +0,40,1,43,0,0,226,138,99,35.02,95,73,1 +0,47,0,0,0,1,221,140,94,28.84,80,85,0 +0,39,0,0,0,0,243,116,79,22.44,85,82,0 +0,57,0,0,0,0,257,133,94,17.71,143,75,0 +0,58,1,15,0,0,275,140,78,19.18,78,74,1 +0,67,0,0,1,0,295,170,89,35.35,66,63,1 +0,42,1,20,0,0,310,124,72.5,22.32,96,74,0 +0,60,1,9,0,0,280,150.5,90,33.45,90,NA,1 +0,52,0,0,0,0,246,136,84,20.15,101,86,0 +1,51,0,0,0,0,275,159,99,28.57,60,88,1 +0,44,1,9,0,0,NA,147.5,96,30.57,78,NA,1 +0,50,0,0,0,0,305,151,106.5,25.38,100,75,1 +1,41,1,20,0,0,293,132,86,24.62,65,75,1 +0,38,1,5,0,0,193,107,73,20.73,85,72,0 +0,57,0,0,0,0,219,125,83,23.22,65,115,0 +1,35,1,20,0,0,200,131,87,23.93,71,70,0 +1,42,1,30,0,0,270,122,82,30.31,72,142,0 +1,37,1,NA,0,0,188,123.5,77,26.62,65,80,0 +1,45,0,0,0,0,201,107.5,64.5,23.85,88,NA,0 +0,58,0,0,0,0,200,161,96,25.02,80,NA,1 +1,35,1,20,0,0,234,122.5,76.5,25.16,75,85,0 +1,51,1,9,0,0,696,157,87,24.44,95,84,1 +0,62,0,0,0,0,240,154,92,29.49,55,67,1 +1,42,1,20,0,0,234,103,71,21.88,68,82,0 +0,44,1,8,0,0,179,122,70,24.37,72,NA,0 +1,39,1,30,0,0,292,153,100,28.09,110,69,1 +1,44,1,30,0,0,363,140,87,26.44,95,79,0 +0,59,0,0,0,0,226,108,72,24.87,55,86,0 +1,60,1,10,0,0,217,167,109,24.86,95,72,1 +0,53,0,0,0,0,265,132,80,26.25,67,76,0 +0,40,1,9,0,0,189,115,81,22.73,80,103,0 +1,53,0,0,0,0,253,115,81,28.09,70,84,0 +1,41,1,20,0,0,201,122,76.5,23.81,70,73,0 +0,60,0,0,0,0,279,140.5,89,22.43,80,69,1 +0,36,0,0,0,0,209,107,73.5,21.59,75,73,0 +0,45,1,20,0,0,311,117.5,76,26.27,68,67,0 +0,50,1,9,0,0,256,136.5,81,23.07,75,78,0 +1,43,1,20,0,0,195,113,81,34.32,70,87,0 +1,45,1,NA,0,0,248,121,72,27.88,64,88,0 +0,49,0,0,0,0,278,131,93,31.4,80,66,0 +1,42,1,20,0,0,223,119.5,87,23.56,70,73,0 +0,55,0,0,0,0,331,128,84,21.18,70,76,0 +1,45,1,20,0,0,271,164,98,26.05,94,81,1 +0,53,0,0,0,0,267,152,89,28.49,94,103,1 +0,39,1,5,0,0,188,113,81,26.44,85,87,0 +0,38,1,10,0,0,226,117.5,72,20.71,72,73,0 +1,42,0,0,0,0,252,151.5,95,25.74,78,73,1 +0,48,1,5,0,0,235,120,81,23.36,86,80,0 +1,62,0,0,0,0,164,126,79,27.89,66,69,0 +1,63,0,0,0,0,190,148,90,27.13,72,86,1 +0,49,0,0,0,0,165,120,66.5,21.45,71,74,0 +0,46,1,10,0,0,229,97.5,72,18.99,80,NA,0 +1,55,1,30,0,0,175,150,88,22.72,56,NA,0 +0,43,1,9,0,0,207,95.5,70,19.78,93,79,0 +0,45,0,0,0,0,155,116,81.5,25.56,72,82,0 +0,38,1,9,0,0,220,105,69,24.69,110,87,0 +1,46,1,30,0,0,187,140,94,24.3,100,67,1 +1,48,0,0,0,0,195,124,80,23.96,52,73,0 +1,45,1,20,0,0,218,130,87,24.1,72,64,0 +0,59,0,0,0,0,225,132,80,28.41,58,88,0 +1,43,0,0,0,0,237,104,74,23.02,60,77,0 +0,45,1,20,0,0,297,142,91,35.02,87,86,1 +0,49,1,20,0,0,277,120,80,19.72,60,75,0 +1,38,1,23,0,0,165,128,80,25.62,90,85,1 +0,47,1,9,0,1,214,144,92,22.73,72,57,1 +1,45,0,0,0,0,275,105,86,32.92,75,92,0 +0,49,0,0,0,0,224,140,88,23.79,80,86,0 +1,37,0,0,0,0,253,122,81,27.98,75,93,0 +1,52,1,20,0,0,205,136.5,92.5,31.05,70,NA,0 +0,37,0,0,0,0,184,137.5,88.5,16.48,100,68,0 +1,45,1,6,0,0,216,127.5,82.5,27.15,70,67,0 +1,57,0,0,0,0,206,124,80,23.04,66,60,0 +0,46,0,0,0,0,313,170,107,27.78,95,62,1 +1,48,1,30,0,0,208,138.5,85.5,23.85,82,64,0 +1,46,1,40,0,0,210,154,91,26.25,88,82,0 +0,57,0,0,0,0,194,199.5,107,26.84,60,69,0 +0,55,0,0,0,0,226,141,84,27.6,69,73,1 +0,39,0,0,0,0,219,161,103,29.06,94,106,1 +0,40,0,0,0,0,196,126,85,22.81,73,96,0 +0,42,1,20,0,0,225,111,71,23.43,95,85,0 +0,61,0,0,0,0,260,137,70,24.83,92,78,0 +0,65,0,0,1,0,279,152,102,30.43,95,78,1 +0,36,1,5,0,0,195,109,69,23.24,70,70,0 +0,44,0,0,0,0,200,128,82,23.24,80,73,0 +0,50,1,20,0,0,258,123,70,19.72,80,71,0 +0,43,0,0,0,0,202,124,92,21.26,75,74,0 +0,50,0,0,0,0,236,152,92,24.47,120,67,1 +0,41,1,20,NA,0,203,120,70,21.26,80,63,0 +0,43,1,15,0,0,300,120,78,28.18,75,106,0 +0,41,1,25,0,0,172,108,73,22.5,85,73,0 +0,55,0,0,0,0,290,132,81,27.86,85,92,0 +1,58,1,3,0,0,187,136.5,84,25.08,63,68,0 +0,46,1,6,0,0,315,165,85,32.89,110,91,1 +0,45,0,0,0,0,201,128.5,73,24.56,85,82,0 +0,66,0,0,0,0,263,193,95,27.07,115,94,1 +0,47,1,20,0,0,304,110,72,20.88,85,75,0 +0,51,0,0,0,0,204,119,80,24.03,85,87,0 +0,46,0,0,0,0,255,117,77,26.35,90,76,0 +0,43,1,20,0,0,200,115,80,26.66,60,81,0 +1,42,0,0,0,0,327,134,93,25.14,70,72,1 +0,64,1,20,0,0,272,131,85,21.82,70,80,0 +1,39,1,20,0,0,230,134,92,28.44,75,56,0 +0,45,1,1,0,0,285,132.5,97.5,24.74,98,77,1 +1,52,1,35,0,1,281,133,93,32.27,115,80,1 +1,50,0,0,0,0,258,129,84,24.56,80,75,0 +1,60,0,0,0,0,235,146,92,26.85,80,108,0 +1,62,0,0,0,0,265,135,80,27.94,50,80,0 +1,51,0,0,0,0,230,115.5,85,30.75,48,85,0 +1,51,1,40,0,0,212,122.5,73,22.34,75,74,0 +0,40,1,20,0,0,272,123,75,23.08,80,63,0 +0,39,0,0,0,0,275,131,80,25.79,94,84,0 +1,47,1,20,0,0,281,119,81,23.72,80,65,0 +0,48,1,20,0,0,259,129,81,21.08,75,65,0 +1,40,1,30,0,0,205,131,81,23.74,66,87,0 +0,43,1,20,0,0,202,114,78,26.61,82,87,0 +1,51,1,30,0,0,342,110,70,28.86,72,87,0 +1,59,1,30,0,0,239,168,100,27.87,65,96,1 +0,44,0,0,0,1,254,145,85,21.27,75,137,1 +0,64,1,6,0,0,239,143,84,20.06,55,73,1 +1,50,0,0,0,0,268,108,69,25.14,65,67,0 +0,37,0,0,0,0,165,108,75,21.84,75,83,0 +1,54,0,0,0,0,265,121,82,23.52,60,67,0 +1,60,1,10,0,0,227,122,80,25.64,58,80,0 +0,69,0,0,0,0,286,117,73,20.92,85,103,0 +1,36,1,20,0,0,226,124.5,84.5,21.63,68,74,0 +0,51,1,2,0,0,261,127,81,20.24,75,96,0 +0,40,1,43,0,0,224,106,72,23.59,82,71,0 +1,58,0,0,0,0,225,105.5,74,25.68,50,93,0 +1,44,1,20,0,0,316,135,95,25.48,75,68,1 +1,44,0,0,0,0,216,113.5,77,28.23,64,77,0 +1,42,1,5,0,0,197,102,70.5,24.68,83,45,0 +0,48,1,30,0,0,305,118.5,73,20.99,70,84,0 +1,46,0,0,0,0,185,121,85,31.31,80,97,1 +0,44,0,0,0,0,194,117,78,24.94,65,79,0 +0,47,1,20,0,0,167,115,70,22.71,75,100,0 +1,46,1,43,0,0,270,116.5,87,28.53,75,71,0 +0,41,1,2,0,0,159,99,62,19.09,80,67,0 +1,61,1,20,0,0,260,115,79,23.65,56,78,0 +0,42,0,0,0,0,218,122,75,18.11,100,85,0 +1,69,1,4,0,0,232,151,74,24.14,75,62,1 +0,53,0,0,0,0,307,142,94,25.7,85,60,0 +0,66,1,20,0,0,241,112,66,23.36,75,74,0 +1,45,1,20,0,0,229,117,78,22.79,85,86,0 +1,38,1,20,0,0,200,123,85,25.63,90,84,0 +1,58,1,30,0,0,200,112,74.5,23.37,75,62,0 +0,39,1,10,0,0,194,112.5,77.5,21.51,67,84,0 +0,47,1,20,0,0,NA,121,70,23.09,80,83,0 +0,56,0,0,0,0,290,164.5,102,30.33,70,105,1 +0,44,1,5,0,0,175,130,80,19.18,75,117,0 +0,59,0,0,0,0,239,127,88.5,27.2,90,78,0 +0,63,0,0,0,0,242,142.5,85,28.25,75,73,1 +0,65,0,0,0,0,221,155,92,31.34,58,NA,0 +1,43,0,0,0,0,199,124.5,84.5,24.45,74,NA,0 +0,41,1,15,0,0,205,120,80,20.67,86,64,0 +1,55,1,20,0,0,283,137,82,28.49,75,85,0 +0,46,0,0,0,0,193,124.5,72,26.84,75,80,0 +0,46,1,20,0,0,250,112.5,60,22.72,82,74,0 +1,39,1,1,0,0,250,148,94,30.08,85,NA,1 +0,48,0,0,0,0,215,128,86.5,22.72,89,85,0 +0,46,1,20,0,0,267,119,65,29.15,83,75,0 +0,48,1,4,0,0,253,120,77.5,24.53,70,98,0 +1,57,0,0,0,1,213,136.5,87,25.51,58,119,0 +0,40,1,20,0,0,165,101,59,23.06,60,76,0 +1,61,1,20,0,0,262,129,85,21.77,80,74,0 +1,47,0,0,0,0,259,139,79,29.34,70,71,0 +0,47,1,11,0,0,229,127,76.5,23.48,65,64,0 +0,42,1,9,0,0,200,119,75,22.91,57,69,0 +1,56,0,0,0,0,193,114,80,28.41,60,88,0 +0,41,0,0,0,0,225,110,60,25.54,75,58,0 +1,40,1,43,0,0,216,138,91,22.67,72,NA,0 +1,58,1,NA,0,0,235,127.5,76,21.02,81,135,0 +1,48,1,40,0,0,247,133,77.5,33.99,81,95,0 +1,65,1,20,0,0,177,119,82.5,21.18,60,88,0 +0,61,1,9,0,0,259,134.5,87,22.91,70,91,0 +0,52,1,9,NA,0,275,102,70.5,20.4,65,NA,0 +0,47,0,0,0,0,220,124,75.5,24.71,65,68,0 +0,41,1,16,0,0,243,159,100,27.78,78,71,1 +0,47,0,0,0,0,346,118.5,81,34.56,70,NA,0 +1,60,1,9,0,0,235,108.5,73.5,21.76,65,102,0 +0,37,1,20,0,0,254,119,62.5,28.78,70,69,0 +1,36,1,25,0,0,215,110,67,23.1,63,84,0 +0,52,0,0,1,0,264,181,112.5,24.8,74,77,1 +0,58,0,0,0,1,265,143.5,85,21.68,91,107,1 +1,57,1,3,0,0,225,177.5,120,25.48,72,96,1 +0,45,1,20,0,0,198,119,80,22.18,78,79,0 +0,58,1,10,0,0,226,125,75,24,75,73,0 +1,62,1,5,0,0,243,157,96,28.83,75,71,1 +0,61,0,0,0,0,235,102,74.5,19.22,67,83,0 +1,44,1,25,0,1,241,111,78,27.78,85,167,0 +1,48,0,0,0,0,175,131,52,24.95,75,77,0 +1,65,1,3,0,0,194,122,68,26.08,60,73,0 +1,52,1,15,0,0,212,138,86.5,24.88,60,NA,0 +0,39,0,0,0,0,186,124,80,29.7,75,102,0 +0,46,0,0,0,0,193,106.5,70.5,26.18,75,NA,0 +0,40,1,3,0,0,173,125,75,25.67,65,102,0 +1,63,1,20,0,0,228,141,82,25.84,82,81,1 +0,39,0,0,0,0,200,141,87,24.04,75,70,1 +0,50,0,0,0,0,240,107.5,70,26.76,67,102,0 +1,46,1,20,0,0,253,159,100,27.31,64,70,1 +0,47,1,30,0,0,198,143,87,20.86,85,79,0 +0,61,0,0,1,0,209,133,93,NA,80,NA,1 +0,64,0,0,1,0,285,160,87,29.97,65,87,1 +0,59,1,20,0,0,254,154.5,93,21.82,85,89,1 +0,63,0,0,0,0,297,133.5,92,25.09,80,74,0 +0,51,1,20,0,0,326,112,83,20.82,104,70,0 +1,47,1,30,0,0,190,147.5,92.5,31.31,77,82,1 +1,38,1,15,0,0,150,123,76,20.39,60,82,0 +0,45,0,0,0,0,288,135,88,25.23,85,79,0 +1,61,0,0,0,0,195,113,77,25.51,80,96,0 +1,51,1,5,0,0,290,168,103,29.11,80,64,1 +1,45,1,20,0,0,257,117.5,82.5,24.62,58,86,0 +0,54,0,0,0,0,197,138,80,31.82,72,73,0 +0,64,1,15,0,0,259,195,110,20.09,75,63,1 +0,49,0,0,0,0,232,125,83,22.17,70,77,0 +0,59,0,0,1,0,223,159,102,28.3,62,83,1 +1,48,1,15,0,0,240,126,84,25.82,73,60,0 +1,48,0,0,0,0,306,140,94,23.95,65,70,1 +1,63,1,20,0,0,291,134.5,80,22.49,77,70,0 +1,55,0,0,0,0,275,115,78,28.52,73,79,0 +0,42,1,9,0,0,231,110,80,19.12,78,70,0 +1,59,0,0,0,0,274,144.5,91.5,26.08,67,63,0 +0,64,0,0,0,0,272,149.5,86,26.91,85,62,1 +0,51,0,0,0,0,261,142,90,28.58,95,84,1 +1,54,1,40,0,0,250,114,82,24.39,65,62,0 +0,66,0,0,0,0,312,150,74,25.59,72,90,1 +1,52,1,15,0,0,253,159,89,23.68,100,NA,1 +1,36,0,0,0,0,233,128,86.5,35.31,83,76,0 +0,54,0,0,0,0,320,165,84,38.31,80,99,1 +0,47,0,0,0,0,231,102.5,66,23.4,70,78,0 +0,41,0,0,0,0,181,112,75.5,25.14,72,95,0 +1,62,1,40,0,0,260,127.5,75,25.35,65,103,0 +0,65,0,0,0,0,274,143.5,93,26.82,79,63,0 +0,50,0,0,0,0,234,143,90,29.36,70,86,1 +1,55,1,15,0,0,215,121.5,81.5,28.45,71,98,0 +1,51,0,0,NA,0,154,98,66,22.86,63,82,0 +1,37,1,30,0,0,210,120,72,23.8,75,97,0 +0,68,0,0,NA,0,257,144,95,29.25,80,77,0 +1,60,1,20,0,0,253,141,92,24.1,75,76,1 +0,47,0,0,0,0,205,133,93,27.82,68,60,0 +1,38,0,0,0,0,184,102,73,25.69,86,78,0 +0,47,1,20,0,0,221,116.5,81,25.85,65,75,0 +0,48,1,5,0,0,262,141,88,25.21,80,NA,0 +1,51,0,0,0,0,227,158,105,27.22,60,96,1 +0,61,0,0,0,0,254,168,92,31.63,80,90,1 +1,56,1,43,0,0,240,128.5,87.5,31.5,80,NA,1 +1,41,0,0,0,0,245,139,84,28.76,95,68,0 +1,47,1,15,0,0,206,125,72,21.14,80,74,0 +0,50,1,25,0,0,330,119,86,26.3,86,NA,0 +1,37,1,30,0,0,249,112,70,22.79,56,76,0 +1,59,1,20,0,0,163,138,80,31.08,70,70,0 +1,50,1,20,0,0,265,110,65,24.45,69,70,0 +0,44,0,0,0,0,178,113,78,31.93,64,74,0 +0,61,0,0,0,0,217,182,86,26.98,105,113,1 +0,43,1,5,0,0,214,121,84,24.68,80,74,0 +1,62,0,0,0,0,157,130,87,28.73,72,47,0 +0,57,1,9,0,0,382,140,94,21.2,98,70,0 +1,39,1,20,0,0,228,122.5,87,31.6,100,73,0 +1,46,1,20,0,0,179,111,80,20.87,72,76,0 +1,49,1,20,0,0,270,160.5,106.5,30.33,75,65,1 +0,44,1,3,0,0,239,103,67,26.58,66,73,0 +0,62,0,0,0,0,288,118.5,71,26.18,68,87,0 +1,55,1,20,0,0,281,165,108,24.14,75,66,1 +1,58,1,9,0,0,229,140,89.5,25.96,80,83,0 +1,53,1,11,1,0,228,132.5,55,19.97,90,83,1 +1,46,1,30,0,0,250,123,76,21.66,55,78,0 +0,62,0,0,0,0,258,162,97.5,30.53,76,87,1 +1,52,0,0,0,0,225,132,88,23.35,72,69,0 +1,41,1,20,0,0,212,112,63.5,25.2,80,76,0 +1,44,1,40,0,0,158,150.5,87,21.44,75,98,0 +0,59,0,0,0,0,280,135.5,72.5,22.38,96,NA,0 +0,58,0,0,0,0,241,153,106,26.94,98,84,1 +0,51,1,10,0,0,240,112,83,24.1,75,77,0 +1,63,1,9,0,0,188,113,82,29.01,74,93,0 +0,42,0,0,0,0,204,108,70.5,27.71,75,65,0 +1,44,0,0,0,0,229,142,92,25.21,72,76,1 +0,57,0,0,0,0,286,153,87,27.64,75,83,0 +0,49,1,20,0,0,346,130,80,22.54,83,77,0 +0,53,0,0,0,0,219,108,65,22.19,70,76,0 +1,54,0,0,0,0,250,123,75,25.91,65,71,0 +0,63,0,0,0,0,361,167,100,27.31,85,103,1 +1,63,1,20,0,0,197,113,70,23.72,67,67,0 +0,42,0,0,0,0,238,125,77.5,22.9,95,77,0 +1,41,1,25,0,0,232,129,83,28.08,75,68,0 +0,66,0,0,0,0,260,167,96,29.04,65,82,1 +1,52,0,0,0,0,220,151,102,25.82,95,85,1 +0,48,0,0,0,0,281,127,79.5,22.83,84,80,0 +0,53,1,20,0,0,256,128,90,23.65,105,102,1 +0,45,0,0,0,0,333,122,80,24.39,75,80,0 +1,40,1,20,0,0,208,119,66,28.09,75,66,1 +1,39,1,40,0,0,215,145.5,92.5,28.35,75,94,1 +0,51,0,0,0,0,230,168.5,97,26.36,57,77,1 +1,45,1,25,0,0,232,165,86,23.86,78,68,1 +1,44,0,0,0,0,210,133,85.5,25.14,75,90,0 +0,55,1,NA,0,0,213,163,91,28.66,69,66,1 +0,56,1,3,0,0,266,114,72,22.64,65,83,0 +1,51,1,9,0,0,255,115,67,26.97,83,58,0 +1,42,0,0,0,0,240,132,89.5,29.35,75,103,0 +1,52,0,0,0,0,285,135,86,27.78,88,93,0 +1,36,1,20,0,0,203,101.5,67,24.43,65,74,0 +1,42,0,0,0,0,236,124,80,21.5,65,60,0 +1,48,1,20,0,0,170,122,70,23.62,90,73,0 +0,50,1,3,0,0,271,112.5,60,23.29,60,61,0 +0,36,1,5,0,0,180,118,80,29.59,75,84,0 +1,62,1,20,0,0,263,112,61,24.46,68,95,0 +0,61,0,0,0,0,194,148,89,23.48,100,101,1 +0,36,1,5,0,0,222,147,94,26.79,76,71,1 +0,58,1,2,0,0,271,146,92,23.07,75,83,0 +1,57,0,0,0,0,310,147.5,90,32.09,67,73,1 +0,49,0,0,0,0,221,136,90,28.3,100,80,1 +0,48,0,0,0,0,241,129,86,20.41,65,67,0 +0,56,1,10,1,1,241,174,97,29.22,90,135,1 +0,61,1,20,0,0,231,128,87,26.3,82,93,1 +0,51,0,0,0,0,242,108,77,22.91,68,80,0 +0,42,1,9,0,0,195,126,81,22.26,84,77,0 +0,58,1,20,0,0,206,159.5,93.5,18.53,75,58,1 +1,47,0,0,0,0,254,138,96,29.73,63,69,1 +1,50,1,20,0,0,231,126,76,20.17,100,NA,0 +0,52,1,20,0,0,287,139,88,26.55,110,NA,1 +0,52,0,0,0,0,216,125,72,24.98,75,95,0 +1,57,1,15,0,1,245,132,77,23.01,76,207,0 +0,61,0,0,0,0,219,120,72.5,22.35,76,92,0 +0,62,0,0,0,0,312,156,105,22.35,77,82,1 +1,56,1,15,0,0,214,142,66,24.47,95,94,1 +1,57,0,0,0,0,178,123,79,26.36,74,78,0 +1,60,1,30,0,0,248,135,85,23.06,80,61,0 +1,50,1,20,0,0,259,108,81,22.81,80,72,0 +0,54,1,5,0,0,267,115,72.5,20.72,70,NA,0 +1,52,0,0,0,0,248,128,83.5,25.88,68,75,0 +0,54,0,0,0,0,230,135,85,19.18,86,89,0 +0,44,1,1,0,0,253,118,68,22.72,68,110,0 +0,59,0,0,0,0,249,138,72,25.02,60,70,0 +0,62,0,0,0,0,282,175,79,28.24,57,67,1 +0,45,0,0,0,0,230,128.5,87.5,23.75,82,62,0 +1,40,1,25,0,0,258,112,78,28.57,80,70,0 +1,43,0,0,0,0,245,144.5,95,27.15,70,45,1 +1,42,1,15,0,0,453,158,108,28.89,90,110,1 +0,40,0,0,0,0,156,110,74,20.79,56,76,0 +1,48,0,0,0,0,165,115,80,26.79,75,78,0 +0,43,0,0,0,0,232,127,79,30.79,75,54,0 +1,59,1,20,0,0,232,151.5,110,26.89,68,69,1 +1,60,0,0,0,0,250,133,89.5,27.13,90,NA,0 +1,63,0,0,0,0,222,159,90,21.9,80,95,1 +0,50,1,3,0,0,238,158,74,35.68,69,98,1 +1,38,0,0,0,0,256,123,92,25.42,62,82,1 +0,35,1,1,0,0,194,100.5,69,17.92,75,73,0 +1,56,0,0,0,0,254,166,107,21.97,75,83,1 +1,45,1,20,0,0,200,113,75.5,21.51,88,72,0 +0,40,0,0,0,0,185,111,79,22.9,75,81,0 +0,35,1,20,0,0,168,83.5,55,16.71,79,63,0 +0,67,0,0,0,0,292,144,89,21.93,96,NA,0 +0,62,0,0,1,0,298,248,130,37.1,96,77,1 +0,61,0,0,0,0,233,126,73,23.16,74,62,0 +1,54,1,3,0,0,173,121,79,26.21,75,68,0 +1,38,1,30,0,0,281,111,72.5,27.22,95,80,0 +0,63,0,0,0,0,273,152,70,19.69,80,79,1 +0,60,0,0,0,0,259,155,90,27.94,68,95,0 +0,49,1,1,0,0,185,108,70,20.13,107,58,0 +1,53,0,0,0,0,325,172.5,112.5,28.47,75,74,1 +1,50,0,0,0,0,204,122,81,32.22,63,73,0 +1,62,1,6,0,0,237,163,94,25.62,85,84,1 +0,55,0,0,0,0,235,123,81,31.44,75,78,0 +0,46,0,0,0,0,221,108,73,20.06,73,85,0 +0,40,1,20,0,0,242,112.5,62.5,27.65,75,70,0 +1,38,1,15,0,0,183,107.5,71,23.74,57,74,0 +0,55,0,0,0,0,256,143,82.5,23.81,90,90,1 +0,40,1,20,0,0,231,129,87,23.29,89,99,0 +1,58,0,0,0,0,149,98,60,24.73,105,71,1 +0,49,0,0,0,0,210,116,76,28.86,65,71,0 +1,50,1,16,0,0,214,114,72,22.93,66,83,0 +1,45,0,0,0,0,252,124,89,22.82,82,71,0 +1,42,1,20,0,0,306,196,109,27.72,102,87,1 +1,51,1,9,0,0,251,160,98,24.63,98,85,1 +0,56,0,0,0,0,267,122.5,85,24.22,92,100,0 +0,53,0,0,0,0,294,156,95,26.05,94,115,0 +0,38,0,0,0,0,240,126.5,75.5,24.38,71,64,0 +0,59,0,0,0,0,281,139,82,29.51,80,75,0 +1,48,1,30,0,0,205,108,75,17.5,63,70,0 +1,40,1,15,0,0,211,122,81,30.55,75,91,0 +0,62,0,0,1,0,186,176.5,92,22.53,79,60,1 +1,36,0,0,0,0,197,115,65,20.42,68,77,0 +1,43,1,30,0,0,218,121,69,24.21,65,103,0 +0,56,0,0,0,0,246,131,79,27.69,90,65,0 +1,59,0,0,0,0,190,127,77,28.47,80,100,0 +0,43,1,25,0,0,258,161.5,96,38.96,88,84,1 +1,43,1,10,0,0,285,100.5,66,22.05,65,75,0 +0,50,1,20,0,0,195,131.5,83,24.61,75,78,0 +0,46,0,0,0,0,217,131.5,77,20.25,65,76,0 +0,60,0,0,NA,0,231,174,110,25.05,85,82,1 +1,43,1,15,0,0,175,125,76,24.92,80,95,0 +1,61,1,15,0,0,217,131,83,26.46,62,81,0 +1,60,0,0,0,0,224,143.5,77.5,26.13,65,81,0 +0,48,0,0,0,0,309,136,90,26.83,70,75,0 +0,38,1,5,0,0,201,123.5,78,27.14,79,77,0 +1,44,1,3,0,0,352,164,119,28.92,73,72,1 +0,49,0,0,0,0,233,149,91.5,26.03,68,NA,1 +1,52,1,30,0,0,223,133,82,21.18,66,77,0 +0,60,1,20,0,0,260,139,81,24.68,74,70,0 +1,62,1,20,0,0,185,124,84,24.53,66,70,0 +1,58,0,0,0,0,320,139,81.5,23.65,80,82,1 +0,48,1,20,0,0,246,113,87,18.01,60,63,0 +0,44,1,20,0,0,302,116,77,22.67,75,98,0 +1,47,1,43,1,0,237,182,110,28.88,72,83,1 +0,44,0,0,0,0,216,113,74,22.19,80,76,0 +0,46,1,20,0,0,275,126,71,24.91,80,71,0 +0,37,0,0,0,0,192,112,67,24.61,80,58,0 +1,57,0,0,0,0,242,130,74,28.9,60,53,0 +1,55,0,0,0,0,202,104,76,31.68,62,74,0 +0,54,0,0,0,0,241,106,77,27.64,78,74,0 +0,55,0,0,0,0,309,177.5,110,22.89,63,73,1 +0,46,1,43,0,0,262,121,78,24.24,75,72,0 +0,39,0,0,0,0,197,134,78,30.36,100,83,0 +0,37,0,0,0,0,209,110,77.5,17.93,77,80,0 +0,43,1,30,0,0,235,128.5,80,18.83,90,70,0 +1,46,1,30,0,1,217,115,72,21.34,90,73,0 +0,68,0,0,0,0,241,154,96,30.12,103,70,1 +0,46,1,7,1,0,280,202,124,28.06,66,63,1 +1,41,1,20,0,0,260,151,85,33.08,95,91,1 +0,55,1,9,0,0,265,154,87,20.92,96,66,1 +1,39,1,30,0,0,186,162,109,29.72,90,129,1 +0,41,1,9,0,0,206,122,78,22.54,85,NA,0 +0,46,1,15,0,0,210,117,78.5,22.54,72,115,0 +1,48,1,5,0,0,150,123,72.5,25.1,78,NA,0 +0,53,1,20,0,0,222,123,82,25.52,72,67,0 +0,58,0,0,0,0,292,110,83,26.98,65,73,0 +1,57,1,15,0,0,221,117,72,25.51,75,83,0 +1,40,0,0,0,0,161,122,85,30.8,75,85,0 +0,49,0,0,0,0,273,154,80,20.26,75,63,0 +0,43,1,20,0,0,291,106,65,23.83,68,82,0 +1,37,0,0,0,0,212,114.5,77,31.22,87,68,0 +0,43,1,20,0,0,276,99,62,22.17,60,80,0 +0,46,1,25,0,0,165,99.5,66,21.67,72,66,0 +0,62,0,0,0,0,276,185,95,26.21,80,110,1 +0,53,0,0,0,0,366,148,88,32.52,85,NA,1 +0,61,0,0,0,0,310,108,70,30.23,60,65,0 +1,35,0,0,0,0,245,159,95.5,26.23,110,NA,1 +0,49,0,0,1,0,184,121,82,21.14,60,78,1 +1,56,1,20,0,0,186,116,67,24.62,70,83,0 +0,67,1,9,0,0,NA,185,110,19.53,100,NA,1 +0,54,0,0,0,0,207,158,89,31.44,67,112,1 +0,39,1,20,0,0,190,85,70,22.43,88,60,0 +1,42,1,NA,0,0,196,123,73,22.06,66,NA,0 +0,65,1,3,0,0,217,169,111,32.54,65,78,0 +0,40,1,5,0,0,209,130,84.5,39.94,77,104,0 +0,41,0,0,0,0,199,117,86,34.54,72,84,0 +0,36,1,15,0,0,202,105.5,67,22.66,90,63,0 +1,48,0,0,0,0,235,135,88,27.61,92,137,0 +0,52,0,0,0,0,193,146,89,25.37,115,84,0 +1,63,1,15,0,0,207,165,100,21.33,72,77,1 +1,61,0,0,0,0,206,143,96,27.04,70,87,1 +0,44,1,30,0,0,292,110,65,22.55,62,78,0 +1,53,1,43,0,0,246,176,109,32.32,72,59,1 +0,44,1,9,0,0,140,118,74,26.51,80,82,0 +0,39,0,0,0,0,205,104,74,20.55,68,NA,0 +1,44,1,20,0,0,246,136,94,24.56,85,86,1 +0,48,0,0,0,0,244,117,81.5,28.96,67,78,0 +0,45,1,5,0,0,268,130,94,34.27,85,93,1 +0,58,1,10,0,0,252,135,84,28.24,85,79,1 +1,40,1,15,0,0,200,122.5,75,20.25,60,67,0 +1,39,1,3,0,0,230,140,97,25.31,72,NA,1 +0,47,1,30,0,0,175,107,69,23.64,92,70,0 +0,44,1,20,0,0,270,167.5,92.5,21.28,85,77,1 +0,47,1,20,0,0,226,122.5,80,24.62,72,68,1 +0,57,1,10,0,0,238,133,72,18.09,100,115,1 +0,60,0,0,0,0,275,138,87,29.64,85,86,0 +1,41,0,0,0,0,280,117.5,80,28.68,65,65,0 +0,42,0,0,0,0,206,101,75,18.73,55,84,0 +1,58,0,0,0,0,250,109,78.5,25.26,90,83,0 +1,45,0,0,0,1,189,132,78,28.4,75,177,0 +0,40,1,15,0,0,NA,131.5,80,24.73,100,NA,0 +0,63,0,0,0,0,238,123,66,28.6,70,98,0 +1,49,1,40,0,0,167,119,67,25.83,79,83,0 +0,51,1,15,0,0,220,137,79,21.66,80,74,0 +1,40,0,0,0,0,193,130,89,28.32,96,84,0 +0,49,0,0,0,0,308,128,78,24.82,80,70,0 +0,41,0,0,0,0,166,128.5,74.5,21.02,81,NA,0 +0,55,0,0,0,0,212,161,85,28.26,66,63,1 +1,38,1,20,0,0,270,120,75,23.76,83,96,0 +0,54,1,15,0,0,262,230,110,24.76,93,97,1 +0,40,1,9,0,0,180,118,86.5,22.69,89,67,0 +1,50,1,2,0,0,238,121,85,25.31,88,NA,0 +1,54,1,20,0,0,235,143,75,32.99,85,102,0 +1,66,0,0,0,1,189,140,71,27.56,70,119,0 +1,63,0,0,0,0,178,155,79,25.9,55,61,1 +1,52,0,0,0,0,170,153,102.5,29.35,91,67,1 +0,48,0,0,0,0,202,146.5,79,22.19,82,95,0 +0,38,1,25,0,0,205,117.5,77,21.44,100,NA,0 +1,54,1,25,0,0,208,137.5,82.5,25.58,75,63,0 +0,38,0,0,0,0,182,138,72,21.67,85,108,0 +1,65,1,25,0,0,215,147.5,95,29.08,82,88,0 +1,53,0,0,0,0,196,129,80,26.32,75,89,0 +0,44,1,15,0,0,244,101,66,25.38,85,76,0 +0,47,1,20,0,0,NA,120,77.5,23.39,82,NA,0 +0,47,0,0,0,0,190,162,85,30.59,65,80,1 +0,57,0,0,0,0,285,197,72,23.41,68,78,1 +0,44,1,5,0,0,231,133,89,29.29,70,83,0 +0,43,1,20,0,0,286,164,89,24.44,75,87,1 +1,50,1,10,0,0,202,189,121,33.81,65,72,1 +0,41,1,5,0,0,226,125.5,82,23.8,67,75,0 +0,45,0,0,0,0,297,134,93,28.81,92,74,0 +0,46,1,3,0,0,193,118,92,21.14,75,78,0 +0,50,0,0,0,0,270,142.5,85,21.86,72,75,0 +0,42,0,0,0,0,216,124,82,28.74,70,67,0 +0,58,0,0,0,0,240,126,52,25.66,75,63,0 +1,48,0,0,0,0,240,136,95.5,26.36,75,73,0 +0,36,0,0,0,0,188,112,78,22.54,63,73,0 +1,55,1,3,NA,0,246,112.5,72.5,27.56,60,72,0 +1,68,1,15,0,0,157,106,48,26.73,65,65,0 +0,37,1,15,0,0,275,118,71,23.1,64,95,0 +0,56,1,10,0,0,225,120,70,18.46,57,NA,0 +0,50,1,15,0,0,204,147,100,39.94,85,90,1 +0,53,0,0,0,0,220,108,81,28.71,56,NA,0 +1,62,0,0,0,0,211,128,78,27.99,56,83,0 +0,40,1,1,0,0,178,142,84,34.46,88,77,0 +0,41,1,15,0,0,268,140,92.5,24.71,75,90,1 +0,38,1,30,0,0,164,113,68,25.75,70,75,0 +1,53,1,40,0,0,270,151,89,26.76,75,75,1 +1,56,1,30,0,0,193,139,93,28.67,57,67,1 +0,46,1,15,0,0,207,144,88,23.65,85,86,1 +0,51,0,0,0,0,190,153,102.5,39.22,100,69,1 +0,39,0,0,0,0,226,146,86,24.41,85,85,1 +0,37,1,20,0,0,257,141,93,41.29,80,58,0 +0,62,0,0,0,0,NA,122,75.5,23.03,75,NA,0 +0,43,0,0,0,0,210,138.5,95.5,23.09,75,NA,1 +0,46,1,20,0,0,200,112.5,71,18.68,80,77,0 +0,48,0,0,0,0,227,100,76,29.45,75,67,0 +1,48,0,0,0,0,273,140,90,27.48,67,78,1 +1,49,0,0,0,0,220,114,82,24.68,69,60,0 +1,60,0,0,0,0,226,155,92.5,30.85,80,87,1 +1,49,1,20,0,0,155,128,82,23.58,69,77,0 +0,41,1,20,0,0,243,97,63,22.53,76,64,0 +0,38,1,20,0,0,175,112,73,19.49,70,71,0 +0,59,0,0,0,0,282,148,89,25.69,90,NA,1 +1,56,0,0,1,0,208,167,92,24.66,60,75,1 +0,54,1,10,0,0,240,113,73,24.21,80,77,0 +1,48,1,60,0,0,232,136,81,25.83,80,78,0 +0,69,0,0,1,0,203,166,90,25.4,77,80,1 +1,67,0,0,1,0,223,214,94,25.86,80,87,1 +1,43,1,20,0,0,192,143,88,27.94,75,79,1 +1,48,1,15,0,0,194,134.5,90.5,25.68,60,72,0 +1,48,1,35,0,0,263,132,91,40.08,90,91,0 +0,42,1,2,0,0,230,124,80,24.87,90,77,0 +0,47,1,20,0,1,211,159.5,82.5,34.08,86,250,1 +0,60,1,10,0,0,255,145,100,27.94,79,NA,0 +0,62,0,0,0,1,282,125,75,29.88,75,136,0 +1,57,1,20,0,0,260,123,73,27.51,65,83,0 +1,38,1,9,0,0,163,117.5,75,28.3,75,70,0 +1,56,0,0,0,0,220,132.5,82.5,29.77,77,NA,0 +0,51,1,5,0,0,315,119,75,25.79,75,55,0 +1,40,1,20,0,0,186,131,81,22.14,86,87,0 +0,43,1,20,0,0,250,123,74,26.01,75,90,0 +1,34,1,20,0,0,155,117.5,72.5,23.51,85,65,0 +0,55,0,0,0,0,185,140,84,25.94,78,90,1 +0,44,0,0,0,0,205,116,70,21.99,68,85,0 +1,50,0,0,0,0,252,114,75,30.89,60,69,1 +1,52,0,0,0,0,225,119,65,26.89,62,74,0 +0,63,0,0,0,0,235,125,79,24.38,96,83,0 +1,43,1,20,0,0,240,147.5,88,25.6,65,113,0 +1,41,1,40,0,0,242,124.5,86.5,28.8,87,67,0 +0,34,1,20,0,0,180,111,56,21.51,91,78,0 +1,37,0,0,0,0,195,141,84,25.66,83,117,1 +0,50,0,0,0,0,210,105,77,23.96,60,86,0 +0,36,1,9,0,0,212,127,83,26.82,75,75,0 +0,59,1,5,0,0,254,126.5,79,25.92,60,77,0 +1,40,1,20,0,0,248,136.5,78,24.6,90,99,0 +1,42,1,30,0,0,283,145,95,27.53,75,84,0 +1,42,0,0,0,0,186,134,86.5,25.71,88,92,0 +1,43,1,40,0,0,212,135,86,30.22,100,75,1 +1,49,1,15,0,0,309,145,92,32.13,60,73,1 +0,47,1,20,0,0,308,138,94,24.33,70,90,1 +1,60,0,0,0,0,225,149,96,27.73,80,60,1 +0,46,1,20,0,0,275,170,118,36.12,82,84,1 +1,46,1,30,0,0,154,141,90,22.76,65,65,1 +1,49,1,3,0,0,246,141,92,27.92,75,76,1 +0,42,0,0,0,0,234,124,80.5,20.06,75,NA,0 +1,42,0,0,0,0,242,121,80,27.83,72,NA,0 +1,53,0,0,0,0,198,142.5,82,23.84,57,78,1 +0,57,1,NA,0,0,270,120,79,24.83,95,81,0 +0,44,0,0,1,0,208,142,88,31.29,69,77,1 +0,60,0,0,0,0,286,172.5,85,22,72,71,1 +0,47,1,5,0,0,236,128,81,27.42,60,93,0 +0,40,1,20,0,0,214,109.5,69,20.32,80,81,0 +1,44,0,0,0,0,175,104,78,26.26,55,82,0 +0,65,1,9,0,1,271,144.5,88,32.41,82,116,1 +1,49,1,15,0,0,208,118,73,24.16,75,75,0 +0,56,1,3,0,0,265,150,84,28.66,65,73,1 +1,41,0,0,0,0,240,158,102,23.68,75,81,1 +0,46,0,0,0,0,212,148,91.5,26.22,62,75,1 +0,56,1,1,0,0,260,120,84,36.18,80,76,1 +0,59,0,0,0,0,330,155,90,23.94,75,96,1 +1,45,0,0,0,0,185,108,70,20.5,60,87,0 +1,63,0,0,0,0,161,196,102,28.43,56,88,1 +1,59,1,15,0,0,259,116,83,27.93,80,83,0 +1,60,0,0,0,0,220,167.5,110,30.41,90,84,1 +0,48,1,9,0,0,340,143,93,23.08,85,83,1 +0,50,1,30,0,0,165,96.5,62.5,23.48,87,78,0 +0,45,1,3,0,0,220,133.5,85.5,25.38,65,73,0 +0,55,0,0,0,0,257,132,81,27.49,60,86,0 +1,55,0,0,0,0,237,124,84,28.18,63,97,0 +0,41,1,20,NA,0,220,126,78,20.7,86,79,0 +0,57,1,1,0,0,254,146.5,81,41.61,72,85,1 +0,65,0,0,0,1,193,153,100,32,75,107,1 +1,36,0,0,0,0,230,122,78,26.53,45,78,0 +1,60,0,0,0,0,203,140,95,28.04,60,83,1 +0,44,1,20,0,0,284,143,92,21.19,84,88,1 +1,39,1,40,0,0,218,112.5,60,24,65,NA,0 +0,55,1,9,0,0,244,145.5,94,28.86,62,72,1 +0,61,0,0,0,0,240,163,112.5,26.8,75,82,1 +0,38,1,3,0,0,180,115,86,24.91,70,NA,0 +0,59,0,0,0,0,233,149,85,24.67,120,72,1 +0,60,0,0,0,0,275,134,74,19.91,66,85,0 +0,54,0,0,0,1,223,110,67.5,21.22,78,294,0 +0,45,1,10,0,0,232,163,101,23.26,100,74,1 +0,38,1,35,0,0,192,107,71,24.28,75,NA,0 +0,56,0,0,0,0,225,113,75.5,27.51,86,104,0 +0,35,0,0,0,0,190,115,77,23.95,70,80,0 +1,34,1,5,0,0,185,100.5,66,24.42,70,115,0 +0,44,1,7,0,0,189,107.5,78,26.95,60,NA,0 +0,46,1,15,0,0,274,158,97,22.83,92,78,1 +1,45,1,20,0,0,212,118,71,21.03,66,83,0 +0,50,1,15,0,0,261,110,76,23.31,75,85,0 +0,55,0,0,0,0,262,122.5,84,28.68,66,76,1 +1,53,1,20,0,0,231,130,71.5,25.23,75,75,0 +0,60,1,5,0,0,246,160,92,26.38,80,73,1 +1,39,1,15,0,0,318,118,75.5,27.52,65,70,0 +0,61,0,0,0,1,231,161.5,88,31.03,85,166,1 +0,34,1,10,0,0,185,108.5,86,19.68,75,NA,0 +0,40,1,20,0,0,176,99,59,22.13,65,78,0 +1,52,1,20,0,0,239,125,88,23.86,67,123,0 +1,35,1,20,0,0,227,106,73,29.27,70,79,0 +1,49,1,2,0,0,262,115,83,22.86,65,57,0 +1,43,1,45,0,0,201,126,82,29.48,76,92,1 +1,40,1,20,0,0,290,120,89,27.99,80,66,0 +0,40,1,5,0,0,199,97,64.5,23.41,71,NA,0 +1,39,1,10,0,0,215,102,64.5,24.5,68,62,0 +1,50,1,30,0,0,196,131,80,20.42,108,NA,0 +0,51,0,0,0,0,295,131,87,24.41,85,77,0 +0,59,0,0,0,0,254,143.5,92.5,35.11,80,NA,1 +1,37,0,0,0,0,228,113,83,24.81,58,73,0 +0,61,1,20,0,0,286,141,81,23.61,80,52,0 +0,47,1,20,0,1,186,139,85,27.9,80,125,0 +0,67,0,0,0,0,281,101,59,23.1,63,85,0 +0,64,1,20,0,0,282,142,82,24.02,78,NA,1 +0,55,0,0,0,0,204,100.5,62,29.44,82,88,0 +0,41,0,0,0,0,252,133,90,26.83,83,64,0 +0,60,0,0,0,0,247,131,81,22.19,95,94,0 +0,42,1,3,0,0,220,129,81,19.74,80,61,0 +0,38,0,0,0,0,214,115,90,25.69,80,65,0 +1,47,1,30,0,0,277,137,86,26.25,75,85,0 +0,49,0,0,0,0,203,125,70,22.52,72,NA,0 +1,61,0,0,0,0,238,119,78,25.36,80,75,0 +1,52,0,0,0,0,232,154,92,26.51,90,74,1 +0,56,0,0,0,0,246,136,87,26.21,80,72,1 +1,54,1,30,NA,0,234,152.5,80,23.5,75,75,1 +0,34,0,0,0,0,227,102,68,24.96,80,75,0 +1,58,0,0,1,0,241,164,97,32.18,65,54,1 +0,54,1,20,1,0,325,170,107,25.07,90,64,1 +0,48,0,0,0,0,224,152.5,90,29.8,67,85,1 +0,59,0,0,0,0,254,116,71,25.48,75,98,0 +1,53,0,0,0,1,234,113,68,24.8,76,108,0 +1,43,0,0,0,0,210,127.5,82.5,27.94,78,80,0 +1,54,1,30,0,0,267,141.5,91,25.36,92,87,1 +0,48,0,0,0,0,274,110,84,22.51,110,78,0 +0,48,0,0,0,0,262,125,80,25.23,85,72,0 +0,46,1,10,0,0,205,115,75,19.48,55,78,0 +1,43,1,40,0,0,188,137,87,26.28,75,73,1 +0,53,0,0,0,0,263,173,89,23.03,65,82,1 +1,51,1,40,0,0,227,162.5,104,34.97,90,65,1 +0,52,1,20,0,0,410,105,67.5,27.33,75,90,0 +0,43,0,0,0,0,223,100,70,22.73,63,68,0 +1,65,1,6,0,0,238,146,86,29.47,75,66,1 +1,50,0,0,0,1,232,148.5,94,25.78,80,88,1 +0,49,1,5,0,0,350,135,86.5,25.56,75,83,0 +1,35,1,20,0,0,223,128,82,19.99,80,67,0 +0,61,1,9,0,0,252,119,77,23.2,65,65,0 +0,44,0,0,0,0,257,129,93,27.56,75,76,0 +1,41,1,30,0,0,289,109,74,25.8,70,86,0 +1,60,0,0,0,0,266,115.5,82.5,23.68,82,83,0 +0,56,0,0,NA,0,391,126,84,24.83,80,78,1 +1,47,1,20,0,1,296,141,93,28.5,68,332,1 +0,41,1,20,0,0,235,129,94,23.71,102,81,0 +0,53,0,0,0,0,230,170,113,29.55,115,115,1 +1,48,0,0,0,0,231,121,81,27.56,70,85,0 +1,39,1,25,0,0,206,124,78,19.98,69,80,0 +0,38,0,0,0,0,185,100,72,22.15,85,83,0 +0,65,0,0,0,0,223,158,90,27.26,85,93,1 +0,39,1,8,0,0,192,109,61,23.36,64,84,0 +0,37,0,0,0,0,185,99,59,22.52,70,69,0 +0,37,0,0,0,0,181,120.5,80,26.29,71,67,0 +0,39,0,0,0,0,190,133,87,32.09,56,80,0 +0,52,1,10,0,0,188,130,71,23.88,80,89,0 +1,55,0,0,0,0,232,132.5,87,20.72,72,71,0 +1,62,0,0,0,0,252,156.5,93,28.65,88,97,0 +1,46,1,20,0,0,288,131,81,25.94,90,80,0 +1,52,1,30,0,0,222,108,70,23.09,72,61,0 +1,68,0,0,0,0,276,127,66.5,25.78,75,104,1 +1,45,1,20,0,0,207,111,72,21.49,67,87,0 +0,62,0,0,0,0,266,124,69,22.9,66,82,0 +0,53,0,0,0,0,279,167,101,30.85,90,87,1 +0,42,0,0,0,0,215,111,72,25.38,77,55,0 +0,65,0,0,1,0,342,168.5,98.5,23.87,75,60,1 +1,63,0,0,0,1,260,155.5,98,30.08,67,109,1 +0,49,1,15,0,0,267,107,74,27.8,65,75,0 +0,52,0,0,0,0,209,111,79,23.63,96,70,0 +0,45,0,0,0,0,219,123.5,80.5,24.45,65,83,0 +1,53,1,3,0,0,218,120,80,29.87,90,73,0 +0,62,1,20,1,1,358,215,110,37.62,110,368,1 +1,40,1,30,0,0,190,110,70,24.63,60,72,0 +1,57,0,0,1,0,321,192.5,113,25.94,63,90,1 +0,41,1,NA,0,0,171,135,82.5,24.35,79,82,0 +1,37,1,30,0,0,170,111,74,26,80,67,0 +0,46,1,15,0,1,233,106,60,20.84,75,348,0 +1,38,1,30,0,0,266,149,91,31.08,69,61,1 +1,48,1,40,0,0,228,110,70,21.47,70,76,0 +0,62,0,0,0,0,242,137,75,30.51,60,78,0 +0,55,0,0,0,0,260,172.5,100.5,32.27,58,72,1 +1,68,0,0,0,0,237,130,62,33.52,60,82,0 +1,45,0,0,0,0,213,130,80,27.25,68,75,0 +1,58,1,20,0,0,290,124,76,21.65,63,81,0 +0,46,0,0,0,0,199,102,56,21.96,80,84,0 +0,43,1,20,0,0,163,104.5,65,17.84,75,71,0 +0,43,1,20,0,0,204,133,86.5,26.01,100,79,0 +0,38,0,0,0,0,254,120.5,76,22.73,75,78,0 +0,64,0,0,0,0,200,151,90,21.99,70,87,1 +0,67,1,5,1,0,245,169,82,26.05,122,122,1 +1,45,1,10,0,0,255,111,80,30.92,72,80,1 +1,37,1,20,0,0,220,130,83,26.71,68,NA,0 +1,45,0,0,0,0,347,157,98,26.63,88,80,0 +1,48,0,0,0,0,259,147.5,87.5,25.1,65,73,1 +1,61,1,30,0,0,228,123,88,26.88,95,67,0 +1,52,0,0,0,1,232,130,74,32.52,95,248,0 +0,64,0,0,0,0,279,172,87,24.01,80,70,1 +0,57,0,0,0,0,277,148,89.5,31.82,86,89,1 +1,45,1,20,0,0,256,144,96,26.6,75,83,1 +0,46,1,20,0,0,291,124,81,22.02,78,NA,0 +1,46,0,0,0,0,188,135,95,26.84,60,78,0 +1,38,1,15,0,0,248,110,61,22.17,85,55,0 +0,56,1,40,0,0,214,147,65,17.68,110,87,1 +0,59,0,0,0,0,244,160,85,29.41,72,85,1 +0,48,0,0,0,0,205,140,99,24.41,100,92,1 +1,61,0,0,0,0,300,127,75,24.93,48,NA,0 +1,40,1,40,0,0,334,120,77,22.66,82,92,0 +1,41,0,0,0,0,246,111.5,67,18.76,65,60,0 +0,45,0,0,0,0,285,120,80,27.45,84,93,0 +1,59,1,43,0,0,162,117,73,25.01,96,87,0 +0,58,0,0,0,0,345,188,102,28.89,95,NA,1 +1,47,0,0,0,0,270,152.5,108,26.09,90,88,1 +0,39,0,0,0,0,181,112,71,21.8,77,67,0 +1,65,0,0,0,0,205,106,73,23.14,66,87,0 +1,37,1,30,0,0,189,127,85,32.35,88,84,0 +1,40,0,0,0,0,192,128,81,25.41,75,76,0 +0,53,0,0,0,0,272,165,95,28.92,100,100,1 +0,38,1,20,0,0,167,105,70,19.76,80,80,0 +0,57,0,0,0,0,236,164,100,25.45,90,67,1 +1,42,1,20,0,0,143,119,73,22.04,60,70,0 +0,39,0,0,0,0,202,100.5,67,21.33,63,NA,0 +0,39,1,25,0,0,200,110,68,20.24,79,62,0 +0,65,0,0,0,1,304,139,75,25.12,82,116,1 +0,46,1,10,0,0,263,110,65,27.27,84,73,0 +1,58,0,0,0,0,230,128,88,25.98,75,58,1 +1,68,0,0,0,0,258,128,79,29.54,85,86,0 +1,40,0,0,0,0,240,150,98,40.38,70,74,1 +1,38,0,0,0,0,210,116.5,74,21.19,65,89,0 +1,55,0,0,0,0,199,134,80,26.41,120,NA,0 +1,52,1,20,0,0,232,155,80.5,29.6,72,67,1 +0,63,0,0,0,0,258,166,92,26.91,75,NA,1 +0,54,0,0,0,0,260,173,88,27.2,73,87,0 +1,44,0,0,0,0,212,130,94,26.97,80,64,1 +0,47,0,0,0,0,230,137,79,27.13,75,76,0 +0,42,0,0,0,0,205,112,65,27.35,79,60,0 +1,59,1,20,0,0,206,187,97,26,100,69,1 +1,55,1,20,0,0,243,116,72,24.73,95,72,0 +0,40,0,0,0,0,202,139,85,22.01,85,64,0 +1,43,0,0,0,0,200,141,89,26.59,80,105,0 +1,43,1,20,0,0,184,127.5,81,28.31,108,75,0 +0,36,1,25,0,0,190,122,83,23.07,85,NA,0 +0,56,0,0,0,0,233,173,98.5,21.88,62,76,1 +0,52,0,0,0,0,203,129,97,37.58,90,77,1 +1,62,1,30,0,0,373,138.5,85,23.35,80,67,0 +0,44,1,10,0,0,222,130,86,27.42,100,84,0 +0,63,0,0,0,0,316,92.5,66.5,23.1,62,76,0 +1,57,0,0,0,0,155,143,96,31.01,63,88,1 +1,38,1,9,0,0,305,114,80,28.61,75,71,0 +0,38,1,35,0,0,164,110,76,23.85,68,83,0 +1,38,0,0,0,0,155,131.5,77.5,25.94,74,84,0 +1,59,0,0,0,0,248,151.5,71,27.14,75,110,1 +0,52,1,NA,0,0,292,157,112,29.56,95,84,1 +0,39,0,0,0,0,173,109,82,27.27,85,NA,1 +0,35,1,20,0,0,185,131.5,84,20.32,64,76,0 +0,61,0,0,1,0,225,194,111,51.28,80,103,1 +1,67,1,60,0,0,261,170,100,22.71,72,79,1 +0,56,1,25,0,0,273,130.5,82,25.48,90,91,0 +0,55,0,0,0,0,237,153,80,28.9,74,72,1 +1,48,1,25,0,0,249,132,95,29.79,90,53,1 +0,51,1,15,0,0,275,150,99,23.17,75,65,1 +0,43,1,10,0,0,214,133,86,22.72,74,77,0 +1,40,1,20,0,0,191,130.5,63,23.92,79,66,0 +0,46,0,0,0,0,212,118,79,26.83,70,72,0 +1,62,0,0,0,0,208,144,80,31.42,75,66,1 +0,35,0,0,0,0,175,121.5,74.5,20.86,92,93,0 +0,49,1,4,0,0,227,150,91,24.3,88,83,1 +1,49,0,0,0,0,239,116,84,31.47,88,76,0 +0,47,1,30,0,0,260,126.5,81,26.58,90,82,0 +0,45,1,10,0,0,202,93.5,58,21.25,60,60,0 +0,39,1,NA,0,0,197,126.5,76.5,19.71,55,63,0 +1,51,0,0,0,0,219,125,84,20.12,72,76,0 +0,51,0,0,0,0,346,152,96.5,25.29,102,79,1 +0,55,0,0,0,0,250,132,88,22.62,78,70,0 +0,57,0,0,0,0,250,152.5,92.5,32.31,75,94,1 +1,52,1,20,0,0,283,145,79,30.12,72,NA,1 +0,41,0,0,0,0,179,111,79,25.87,85,82,0 +1,48,1,10,0,0,260,124.5,75.5,20.42,68,85,0 +0,48,0,0,0,0,202,111.5,72,26.18,74,77,0 +0,47,0,0,0,0,200,126,86,26.32,73,92,0 +0,53,0,0,1,0,291,137,83,38.94,75,73,1 +0,44,1,10,0,0,174,174,130,33.99,80,63,1 +1,63,1,43,0,0,217,110,68,21.99,72,68,0 +1,59,0,0,0,0,313,150,82,27.27,62,94,1 +0,41,0,0,0,0,240,118,81,25.48,80,80,0 +1,41,1,40,0,0,254,141,100,27.68,110,NA,0 +1,39,1,43,0,0,291,177.5,100,25.74,67,91,1 +1,40,1,20,0,0,211,117,76,25.74,70,79,0 +0,50,0,0,0,0,NA,120,75.5,24.77,65,NA,0 +0,39,1,40,0,0,NA,105,67.5,24.43,90,NA,0 +0,66,0,0,0,0,304,161,90,23.48,80,57,0 +0,52,0,0,0,0,292,125,87,31.92,75,67,0 +0,39,0,0,0,0,213,125,87,16.73,110,75,0 +0,56,0,0,0,0,223,144,87,21.75,72,92,1 +1,64,0,0,0,0,263,102.5,63.5,28.82,64,99,0 +1,42,1,30,0,0,270,129.5,100,30.13,82,88,1 +0,42,0,0,0,0,172,120.5,80,19.93,80,61,0 +0,54,1,17,0,0,205,96,66,23.26,85,75,0 +0,43,1,5,0,0,250,112.5,76.5,25.23,66,63,0 +1,64,0,0,0,1,195,176,78,24.9,95,370,1 +0,56,0,0,0,0,306,120,87,25.38,82,84,0 +0,62,0,0,0,0,309,146,82.5,28.55,64,71,1 +0,64,0,0,0,1,262,147,90,26.51,85,173,1 +1,43,1,43,0,0,240,126,79,21.38,88,40,0 +0,56,0,0,0,0,287,169,91,26.36,94,83,1 +0,46,1,10,0,0,202,157,94,19.37,88,65,0 +1,61,1,15,0,0,180,110,80,20.72,77,86,0 +0,44,0,0,0,0,180,120,80,21.67,60,NA,0 +0,55,0,0,0,0,273,125,80,23.05,85,67,0 +0,61,0,0,0,0,235,207,122.5,31.64,80,72,1 +0,54,0,0,0,0,238,136.5,85,24.96,80,71,0 +0,41,1,14,0,0,188,145,99,28.6,85,74,1 +1,51,0,0,0,0,199,113,68,22.46,58,68,0 +0,35,1,3,0,0,185,100,66.5,24.08,55,75,0 +0,46,0,0,0,0,203,129,77,29.29,102,97,0 +0,51,0,0,0,0,239,110,73,22.62,87,NA,0 +0,51,1,43,0,0,NA,122,76,25.73,80,NA,0 +0,35,0,0,0,0,234,107.5,70,29.22,73,NA,0 +0,55,0,0,0,0,266,131,76,26.45,72,84,0 +1,39,1,1,0,0,163,129,84,21.01,60,120,0 +0,43,1,15,0,0,179,101,68.5,19.83,79,76,0 +0,40,0,0,0,0,190,122,78,28.18,86,87,0 +0,54,1,10,0,0,246,153,80,37.3,92,74,1 +1,41,1,15,0,0,200,118,87,21.28,73,71,0 +0,46,0,0,0,0,325,119,86,35.13,68,64,0 +0,44,1,20,0,0,205,132.5,82.5,30.98,72,66,0 +0,37,1,9,0,0,205,111,60.5,21.8,65,82,0 +1,54,1,20,0,0,298,133,84,25.59,90,94,1 +1,46,1,20,0,0,200,110,72,28.61,70,75,0 +0,58,0,0,0,0,385,165,95,41.66,82,91,1 +0,46,0,0,0,0,277,122.5,77.5,27.42,63,77,0 +0,53,1,10,0,0,366,116,83,27.87,68,NA,0 +1,39,1,20,0,0,186,126,67,22.04,63,72,0 +0,52,0,0,0,0,309,142,87,24.22,86,110,0 +1,40,1,20,0,0,242,115,74,23.09,68,80,0 +1,46,0,0,0,0,254,135,100,27.86,83,75,1 +0,40,0,0,NA,0,157,131,85,27.38,95,78,0 +1,64,1,15,0,0,240,141,76,24.94,75,60,1 +1,48,1,20,0,0,245,118,73,21.84,75,102,0 +1,44,1,25,0,0,254,123,82,24.56,87,68,0 +0,40,1,9,0,0,262,97,71,22.14,72,80,0 +1,39,1,9,0,0,271,118,74,22.66,79,76,0 +0,55,0,0,0,0,268,140,88,26.99,85,117,1 +0,38,0,0,0,0,159,108,72,27.68,70,84,0 +1,62,1,20,0,0,264,129,85,26.15,73,63,0 +1,39,1,15,0,0,181,115,75,21.99,67,NA,0 +1,63,1,6,0,0,217,125,71,25.91,75,74,0 +1,43,1,30,0,0,310,140,92,26,90,88,1 +0,55,0,0,0,0,266,107,70,24.51,72,77,0 +1,53,1,40,0,0,232,136,73,22.26,73,73,0 +1,60,1,10,0,0,250,157,94,29.89,63,68,1 +1,45,1,30,0,0,233,147,101,24.32,75,99,1 +1,48,1,30,0,0,215,133,90,27.24,75,50,1 +0,46,1,1,0,0,332,162.5,92.5,26.13,67,67,1 +1,55,1,40,0,0,242,130,85,26.79,80,93,0 +1,36,0,0,0,0,153,143,87,28.3,63,82,1 +0,44,1,10,0,0,170,107,70.5,19.28,63,NA,0 +1,60,1,1,1,0,232,173,106,28.63,85,64,1 +0,34,0,0,0,0,196,108.5,68,25.67,60,82,0 +1,40,1,5,0,0,193,130,86.5,23.48,88,78,0 +1,40,1,43,0,0,325,112,67,25.09,78,94,0 +0,49,1,15,0,0,233,112.5,80,27.87,96,80,0 +0,40,1,20,0,0,213,130,80,19.98,96,76,0 +0,52,1,5,0,0,205,159,110,28.18,75,83,1 +0,58,0,0,0,0,166,185.5,115.5,27.97,100,85,1 +0,46,1,20,0,0,259,129,83,22.91,66,84,0 +0,39,0,0,0,0,181,103,62,20.68,70,69,0 +1,52,1,20,0,0,225,126,75,22.18,85,100,0 +1,66,0,0,0,0,226,213,133,25.29,100,67,1 +0,56,0,0,0,0,199,160,105,25.71,75,83,1 +1,44,0,0,0,1,208,175,101,27.93,95,193,1 +1,56,1,40,0,0,296,111.5,74,23.38,80,71,0 +0,39,0,0,0,0,195,129.5,93.5,34.84,85,85,0 +1,56,0,0,0,0,177,124,77,27.81,60,88,0 +1,46,1,20,0,0,214,110,73,18.1,60,60,0 +1,37,1,20,0,0,315,118,79.5,22.52,82,70,0 +0,59,0,0,0,0,345,148,95,23.72,79,60,0 +1,47,1,30,0,0,271,150,74,20.7,70,NA,0 +1,50,1,20,0,0,262,97.5,62.5,21.55,80,84,0 +1,41,1,20,0,0,206,124,89,27.63,80,70,0 +1,39,1,20,0,0,253,104,64,27.48,65,74,0 +0,44,0,0,0,0,160,107,69,18.63,125,78,0 +0,48,0,0,0,0,193,127,81,25.85,58,70,0 +1,44,1,20,0,0,311,115,80,25.43,68,90,0 +1,44,0,0,0,0,254,130,80,28.15,80,74,0 +0,57,1,10,1,0,272,157,80,25.15,70,95,1 +0,48,0,0,0,0,224,192.5,115,23.03,67,85,1 +1,55,0,0,0,0,198,176,109,28.45,60,85,1 +1,38,0,0,0,0,197,121,82,24.57,60,74,0 +1,44,0,0,0,0,160,118.5,87,25.81,54,NA,0 +0,61,0,0,0,0,210,112,72,24.69,80,77,0 +0,46,0,0,0,0,246,142.5,95,24.28,88,99,1 +1,41,1,15,0,1,155,107,81,20.96,90,191,0 +0,53,0,0,0,0,232,116,71.5,21.31,73,83,0 +1,47,1,20,0,0,119,117,78.5,26.4,75,78,0 +1,42,1,30,0,0,209,130,86,24.01,60,55,0 +1,42,1,30,0,0,240,133.5,97.5,28.94,86,73,0 +0,51,0,0,0,0,264,135,83,26.68,60,74,0 +0,40,0,0,0,0,202,158,103,28.35,125,80,1 +0,52,0,0,0,0,296,140,93,26.81,88,74,1 +1,53,0,0,0,0,275,109,79,27.75,67,104,0 +1,51,1,30,0,0,241,118,79,20.09,70,56,0 +0,40,0,0,0,0,220,136,80.5,22.72,80,70,0 +1,63,1,25,0,0,203,192.5,125,26.18,80,83,1 +0,61,0,0,1,1,265,200,125,29.5,68,256,1 +1,43,0,0,0,0,222,115,72.5,25.46,75,69,0 +1,42,0,0,0,0,214,120,81,28.47,78,77,0 +1,62,1,7,0,0,260,104,69,24.02,70,93,0 +0,36,0,0,0,0,195,116,76,22.16,88,77,0 +0,63,0,0,0,0,253,128,81,26.92,80,102,0 +1,47,0,0,0,0,254,137.5,91,31.98,75,69,1 +0,46,0,0,0,0,247,115,71,27.72,82,69,0 +0,54,0,0,0,1,326,187,95,29.94,67,235,1 +0,58,0,0,0,0,239,121,81,35.19,58,70,1 +0,55,0,0,0,0,195,133.5,81.5,23.46,90,NA,0 +0,56,1,15,0,0,262,126,74,27.35,90,115,0 +1,47,1,20,0,0,290,143,88,27.4,96,77,1 +0,64,0,0,0,0,232,149.5,84,20.49,68,96,1 +1,51,0,0,0,0,220,151,87.5,22.01,80,86,1 +1,43,1,20,0,0,198,116,74,23.99,75,78,0 +0,40,1,20,0,0,221,93,62.5,18.84,64,73,0 +0,46,0,0,0,0,229,125,80,27.27,66,80,0 +1,64,1,5,0,0,180,121,79,20.45,77,92,0 +1,60,0,0,0,0,213,140.5,83,28.59,80,69,1 +0,56,0,0,0,1,273,136,80,27.73,90,210,1 +1,54,1,40,0,0,245,152,82,23.71,75,75,0 +1,37,1,20,0,0,184,113,81,22.16,85,63,0 +0,61,0,0,0,0,271,122,67.5,22.02,73,73,0 +1,69,1,1,0,0,245,123,77,26.58,70,81,0 +0,56,1,6,0,0,217,134,75,29.59,55,92,0 +1,50,1,20,0,0,256,130,84,28.67,70,67,0 +0,51,0,0,0,0,238,123,80,22.19,80,100,1 +0,38,0,0,0,0,175,142,86,22.01,82,73,0 +1,43,1,20,0,0,171,110,74.5,25.09,70,85,0 +0,46,1,7,1,0,282,176,98,33.02,85,78,1 +0,43,1,30,0,0,199,104,79,20.12,72,64,0 +0,56,0,0,1,0,260,158,102.5,26.89,90,88,1 +1,54,1,20,0,0,299,146.5,92,26.38,100,71,1 +1,45,0,0,0,0,220,139,74,27.34,70,100,0 +0,61,0,0,0,0,257,141,80,33.9,85,60,0 +1,49,0,0,0,0,230,108,68,26.17,68,82,0 +0,64,1,20,0,0,270,142,68,21.32,76,80,0 +0,65,0,0,0,0,280,115,73,19.76,65,58,0 +0,63,0,0,0,0,250,190,88,24.16,94,118,1 +1,40,0,0,0,0,213,149,83,26.68,69,94,0 +1,47,0,0,0,0,283,146.5,97.5,26.25,66,73,1 +0,37,0,0,0,0,160,137,82,21.03,94,113,0 +1,51,1,20,0,0,195,122,72,21.51,82,64,0 +1,40,1,40,0,0,169,127,81,25.82,80,83,0 +0,55,0,0,0,0,240,145,96,26.27,72,NA,0 +1,69,1,23,0,0,186,179,93,26.64,72,67,1 +1,51,0,0,0,0,268,206,116,26.35,98,70,1 +1,57,0,0,0,0,201,108.5,70.5,22.9,50,84,0 +0,64,0,0,0,0,232,164,102,33.37,68,73,1 +1,38,0,0,0,0,216,124,84,28.12,63,75,1 +0,48,0,0,0,0,287,155,80,28.54,75,75,0 +1,53,0,0,0,0,228,114,80,20.54,55,75,0 +1,57,0,0,0,0,176,147.5,87.5,24.15,85,100,0 +0,45,1,2,0,0,291,125,82,21.26,75,72,0 +1,57,1,20,0,0,210,120,77.5,27.14,77,71,0 +0,57,0,0,0,0,259,170,101,38.17,85,75,1 +0,39,0,0,0,0,195,97.5,60,20.62,64,68,0 +1,46,1,20,0,0,247,134,96,32.47,80,72,0 +0,42,0,0,0,0,179,115,78,25.75,80,77,0 +0,42,1,20,0,0,235,128,86,24.05,66,70,0 +0,42,0,0,0,0,238,118,80,33.19,75,76,0 +1,67,1,25,0,0,221,144,84,24.92,72,73,1 +0,53,0,0,NA,0,252,122.5,75.5,25.29,75,71,0 +1,49,1,10,0,0,305,135,82,26.29,84,65,0 +1,48,0,0,0,0,206,118,81,28.13,72,87,0 +1,47,1,20,0,0,234,162,110,27.51,80,85,1 +1,55,0,0,0,0,231,105,82,27.73,75,66,0 +1,59,0,0,0,0,237,131.5,84,24.17,90,94,0 +1,55,1,30,0,0,239,144,96.5,28.82,70,102,1 +1,42,0,0,0,0,235,103,70,21.48,67,73,0 +0,48,1,20,0,0,202,128,74,25.11,80,75,0 +1,42,1,43,0,0,226,108,78,22.54,85,68,0 +0,55,0,0,0,0,198,136,93,22.54,85,83,1 +0,62,0,0,0,0,207,127.5,75,22.91,58,80,0 +0,36,1,15,0,0,257,103,72.5,27.86,80,65,0 +0,57,0,0,0,0,212,147,85,35.19,65,85,1 +1,41,1,15,0,0,239,101,69,26.95,80,NA,0 +1,52,0,0,0,1,269,157.5,83,26.6,70,80,1 +1,47,1,43,0,0,227,126,84,19.14,68,74,0 +0,38,0,0,0,0,227,99,62,27.16,75,90,0 +0,61,0,0,0,0,325,125.5,85.5,24.4,68,70,0 +0,69,0,0,1,0,220,143,81,26.27,60,77,1 +1,62,0,0,0,0,241,135,97.5,24.88,85,96,1 +0,56,1,20,0,0,240,112.5,71.5,24.99,72,NA,0 +0,37,1,40,0,0,224,109,72,22.81,77,93,0 +0,47,1,9,NA,0,221,127.5,75,23.78,69,73,0 +1,65,1,6,0,0,236,118.5,77.5,24.3,52,65,0 +1,39,1,20,0,0,287,136,86,19,112,83,0 +0,44,0,0,0,0,230,130,81.5,25.74,88,77,0 +1,57,0,0,0,0,194,133,78,29.02,72,92,0 +0,45,0,0,0,0,235,106,58,26.79,75,79,0 +0,62,0,0,1,0,325,180,108,35.16,75,81,1 +0,38,1,20,0,0,214,101,70,21.83,75,77,0 +0,41,1,5,0,0,205,105,74,20.85,87,NA,0 +1,41,1,43,0,0,249,125,87,27.13,75,81,0 +1,58,0,0,0,0,223,154.5,88,27.91,69,81,1 +0,54,0,0,0,0,302,210,127.5,31.98,68,79,1 +1,51,1,15,0,0,267,129.5,80,25.98,70,79,0 +1,52,0,0,0,0,266,107,75,25.64,82,98,0 +0,41,0,0,0,0,199,111,70,21.99,65,82,0 +0,52,1,9,0,0,218,121.5,57,20.78,79,85,0 +1,41,1,30,0,0,210,132.5,85,28.62,68,70,0 +0,54,0,0,0,0,207,137.5,89,25.43,63,72,0 +1,43,0,0,0,0,285,129,95,26.64,60,74,1 +1,38,0,0,0,0,235,121,83,25.85,92,75,0 +1,65,0,0,0,0,196,157,86,26.36,70,80,1 +0,37,0,0,0,0,208,118.5,70,25.09,70,85,0 +1,44,1,20,0,0,232,137.5,87.5,30.03,88,70,0 +1,58,0,0,0,0,NA,116.5,71,27.04,70,86,0 +0,49,1,8,0,0,215,106,63,19.22,60,66,0 +0,42,1,10,0,0,199,143,79,18.68,92,76,1 +0,44,0,0,0,0,180,110,70,23.98,92,67,0 +1,54,1,20,0,0,261,117,74,20.88,80,77,0 +0,41,0,0,0,0,229,150,89,36.07,75,92,1 +0,37,1,15,0,0,173,101,69,20.02,63,73,0 +1,45,1,20,0,0,241,129,80,27.11,65,65,0 +0,63,0,0,0,0,306,195,105,27.96,75,87,1 +1,65,1,20,1,0,246,179,96,19.34,95,76,1 +0,40,1,9,0,0,207,124,78,22.9,46,66,0 +0,46,0,0,0,0,222,116,80,24.62,75,87,0 +0,63,0,0,0,0,257,170,105,25.49,79,87,1 +0,52,1,30,0,0,240,157.5,105,29.64,72,80,1 +0,61,0,0,0,0,271,133,83,25.31,90,60,0 +0,38,0,0,0,0,169,115,60,26.87,65,60,0 +1,62,0,0,0,0,214,130,80,24.35,75,77,0 +0,42,0,0,0,0,236,160.5,100,27.01,85,74,1 +1,63,1,10,0,1,240,146,84,30.48,75,120,0 +0,38,0,0,0,0,216,142,72,22.01,63,75,0 +0,46,0,0,0,0,213,136,77,31.02,75,73,0 +0,43,1,15,0,0,190,103,67.5,24.08,89,69,0 +0,61,0,0,0,0,261,124,76.5,23.06,55,83,0 +0,51,1,9,0,0,340,152,76,25.74,70,NA,0 +1,65,0,0,0,0,286,135,80,28.06,70,116,0 +1,50,0,0,0,0,282,126.5,88,27.3,85,87,0 +1,42,1,40,0,0,245,105,70,22.41,65,69,0 +1,48,1,43,0,0,209,144,88,29.11,84,60,1 +1,48,0,0,0,0,193,141,95,27.89,75,84,0 +0,56,1,5,0,0,230,123,78.5,24.71,76,87,0 +0,63,0,0,0,1,236,155,82,39.17,78,79,1 +0,59,1,20,0,0,251,125,80,22.18,70,70,0 +0,63,0,0,0,0,266,167,94,25.23,95,94,1 +0,52,0,0,0,0,265,137.5,84.5,26.91,72,86,0 +1,48,0,0,0,0,204,125,84.5,22.37,65,75,0 +1,60,0,0,0,0,252,128,82,21.18,75,70,0 +1,50,0,0,0,0,260,119,74,21.85,80,72,0 +1,53,0,0,0,0,289,188,110,26.7,70,63,1 +1,56,0,0,1,0,287,149,98,21.68,90,75,1 +1,47,1,3,0,0,198,120,80,25.23,75,76,0 +1,45,1,43,0,0,216,137.5,85,24.24,83,105,0 +1,58,0,0,0,0,233,125.5,84,26.05,67,76,0 +1,43,1,20,0,0,187,129.5,88,25.62,80,75,0 +0,50,0,0,0,1,260,190,130,43.67,85,260,1 +0,51,1,20,0,0,251,140,80,25.6,75,NA,1 +0,56,1,3,0,0,268,170,102,22.89,57,NA,1 +1,58,0,0,0,0,187,141,81,24.96,80,81,1 +1,68,0,0,0,0,176,168,97,23.14,60,79,1 +1,50,1,1,0,0,313,179,92,25.97,66,86,1 +1,51,1,43,0,0,207,126.5,80,19.71,65,68,0 +0,48,1,20,NA,0,248,131,72,22,84,86,0 +0,44,1,15,0,0,210,126.5,87,19.16,86,NA,0 +0,52,0,0,0,0,269,133.5,83,21.47,80,107,0 +1,40,0,0,0,0,185,141,98,25.6,67,72,1 +0,39,1,30,0,0,196,133,86,20.91,85,80,0 diff --git a/data/avengers.csv b/data/avengers.csv deleted file mode 100644 index d29946e..0000000 --- a/data/avengers.csv +++ /dev/null @@ -1 +0,0 @@ -name,alignment,gender,publisher Thor,good,male,Marvel Iron Man,good,male,Marvel Hulk,good,male,Marvel Hawkeye,good,male,Marvel Black Widow,good,female,Marvel Captain America,good,male,Marvel Magneto,bad,male,Marvel \ No newline at end of file diff --git a/data/insurance.csv b/data/insurance.csv new file mode 100644 index 0000000..24f6205 --- /dev/null +++ b/data/insurance.csv @@ -0,0 +1,1339 @@ +age,sex,bmi,children,smoker,region,charges +19,female,27.9,0,yes,southwest,16884.924 +18,male,33.77,1,no,southeast,1725.5523 +28,male,33,3,no,southeast,4449.462 +33,male,22.705,0,no,northwest,21984.47061 +32,male,28.88,0,no,northwest,3866.8552 +31,female,25.74,0,no,southeast,3756.6216 +46,female,33.44,1,no,southeast,8240.5896 +37,female,27.74,3,no,northwest,7281.5056 +37,male,29.83,2,no,northeast,6406.4107 +60,female,25.84,0,no,northwest,28923.13692 +25,male,26.22,0,no,northeast,2721.3208 +62,female,26.29,0,yes,southeast,27808.7251 +23,male,34.4,0,no,southwest,1826.843 +56,female,39.82,0,no,southeast,11090.7178 +27,male,42.13,0,yes,southeast,39611.7577 +19,male,24.6,1,no,southwest,1837.237 +52,female,30.78,1,no,northeast,10797.3362 +23,male,23.845,0,no,northeast,2395.17155 +56,male,40.3,0,no,southwest,10602.385 +30,male,35.3,0,yes,southwest,36837.467 +60,female,36.005,0,no,northeast,13228.84695 +30,female,32.4,1,no,southwest,4149.736 +18,male,34.1,0,no,southeast,1137.011 +34,female,31.92,1,yes,northeast,37701.8768 +37,male,28.025,2,no,northwest,6203.90175 +59,female,27.72,3,no,southeast,14001.1338 +63,female,23.085,0,no,northeast,14451.83515 +55,female,32.775,2,no,northwest,12268.63225 +23,male,17.385,1,no,northwest,2775.19215 +31,male,36.3,2,yes,southwest,38711 +22,male,35.6,0,yes,southwest,35585.576 +18,female,26.315,0,no,northeast,2198.18985 +19,female,28.6,5,no,southwest,4687.797 +63,male,28.31,0,no,northwest,13770.0979 +28,male,36.4,1,yes,southwest,51194.55914 +19,male,20.425,0,no,northwest,1625.43375 +62,female,32.965,3,no,northwest,15612.19335 +26,male,20.8,0,no,southwest,2302.3 +35,male,36.67,1,yes,northeast,39774.2763 +60,male,39.9,0,yes,southwest,48173.361 +24,female,26.6,0,no,northeast,3046.062 +31,female,36.63,2,no,southeast,4949.7587 +41,male,21.78,1,no,southeast,6272.4772 +37,female,30.8,2,no,southeast,6313.759 +38,male,37.05,1,no,northeast,6079.6715 +55,male,37.3,0,no,southwest,20630.28351 +18,female,38.665,2,no,northeast,3393.35635 +28,female,34.77,0,no,northwest,3556.9223 +60,female,24.53,0,no,southeast,12629.8967 +36,male,35.2,1,yes,southeast,38709.176 +18,female,35.625,0,no,northeast,2211.13075 +21,female,33.63,2,no,northwest,3579.8287 +48,male,28,1,yes,southwest,23568.272 +36,male,34.43,0,yes,southeast,37742.5757 +40,female,28.69,3,no,northwest,8059.6791 +58,male,36.955,2,yes,northwest,47496.49445 +58,female,31.825,2,no,northeast,13607.36875 +18,male,31.68,2,yes,southeast,34303.1672 +53,female,22.88,1,yes,southeast,23244.7902 +34,female,37.335,2,no,northwest,5989.52365 +43,male,27.36,3,no,northeast,8606.2174 +25,male,33.66,4,no,southeast,4504.6624 +64,male,24.7,1,no,northwest,30166.61817 +28,female,25.935,1,no,northwest,4133.64165 +20,female,22.42,0,yes,northwest,14711.7438 +19,female,28.9,0,no,southwest,1743.214 +61,female,39.1,2,no,southwest,14235.072 +40,male,26.315,1,no,northwest,6389.37785 +40,female,36.19,0,no,southeast,5920.1041 +28,male,23.98,3,yes,southeast,17663.1442 +27,female,24.75,0,yes,southeast,16577.7795 +31,male,28.5,5,no,northeast,6799.458 +53,female,28.1,3,no,southwest,11741.726 +58,male,32.01,1,no,southeast,11946.6259 +44,male,27.4,2,no,southwest,7726.854 +57,male,34.01,0,no,northwest,11356.6609 +29,female,29.59,1,no,southeast,3947.4131 +21,male,35.53,0,no,southeast,1532.4697 +22,female,39.805,0,no,northeast,2755.02095 +41,female,32.965,0,no,northwest,6571.02435 +31,male,26.885,1,no,northeast,4441.21315 +45,female,38.285,0,no,northeast,7935.29115 +22,male,37.62,1,yes,southeast,37165.1638 +48,female,41.23,4,no,northwest,11033.6617 +37,female,34.8,2,yes,southwest,39836.519 +45,male,22.895,2,yes,northwest,21098.55405 +57,female,31.16,0,yes,northwest,43578.9394 +56,female,27.2,0,no,southwest,11073.176 +46,female,27.74,0,no,northwest,8026.6666 +55,female,26.98,0,no,northwest,11082.5772 +21,female,39.49,0,no,southeast,2026.9741 +53,female,24.795,1,no,northwest,10942.13205 +59,male,29.83,3,yes,northeast,30184.9367 +35,male,34.77,2,no,northwest,5729.0053 +64,female,31.3,2,yes,southwest,47291.055 +28,female,37.62,1,no,southeast,3766.8838 +54,female,30.8,3,no,southwest,12105.32 +55,male,38.28,0,no,southeast,10226.2842 +56,male,19.95,0,yes,northeast,22412.6485 +38,male,19.3,0,yes,southwest,15820.699 +41,female,31.6,0,no,southwest,6186.127 +30,male,25.46,0,no,northeast,3645.0894 +18,female,30.115,0,no,northeast,21344.8467 +61,female,29.92,3,yes,southeast,30942.1918 +34,female,27.5,1,no,southwest,5003.853 +20,male,28.025,1,yes,northwest,17560.37975 +19,female,28.4,1,no,southwest,2331.519 +26,male,30.875,2,no,northwest,3877.30425 +29,male,27.94,0,no,southeast,2867.1196 +63,male,35.09,0,yes,southeast,47055.5321 +54,male,33.63,1,no,northwest,10825.2537 +55,female,29.7,2,no,southwest,11881.358 +37,male,30.8,0,no,southwest,4646.759 +21,female,35.72,0,no,northwest,2404.7338 +52,male,32.205,3,no,northeast,11488.31695 +60,male,28.595,0,no,northeast,30259.99556 +58,male,49.06,0,no,southeast,11381.3254 +29,female,27.94,1,yes,southeast,19107.7796 +49,female,27.17,0,no,southeast,8601.3293 +37,female,23.37,2,no,northwest,6686.4313 +44,male,37.1,2,no,southwest,7740.337 +18,male,23.75,0,no,northeast,1705.6245 +20,female,28.975,0,no,northwest,2257.47525 +44,male,31.35,1,yes,northeast,39556.4945 +47,female,33.915,3,no,northwest,10115.00885 +26,female,28.785,0,no,northeast,3385.39915 +19,female,28.3,0,yes,southwest,17081.08 +52,female,37.4,0,no,southwest,9634.538 +32,female,17.765,2,yes,northwest,32734.1863 +38,male,34.7,2,no,southwest,6082.405 +59,female,26.505,0,no,northeast,12815.44495 +61,female,22.04,0,no,northeast,13616.3586 +53,female,35.9,2,no,southwest,11163.568 +19,male,25.555,0,no,northwest,1632.56445 +20,female,28.785,0,no,northeast,2457.21115 +22,female,28.05,0,no,southeast,2155.6815 +19,male,34.1,0,no,southwest,1261.442 +22,male,25.175,0,no,northwest,2045.68525 +54,female,31.9,3,no,southeast,27322.73386 +22,female,36,0,no,southwest,2166.732 +34,male,22.42,2,no,northeast,27375.90478 +26,male,32.49,1,no,northeast,3490.5491 +34,male,25.3,2,yes,southeast,18972.495 +29,male,29.735,2,no,northwest,18157.876 +30,male,28.69,3,yes,northwest,20745.9891 +29,female,38.83,3,no,southeast,5138.2567 +46,male,30.495,3,yes,northwest,40720.55105 +51,female,37.73,1,no,southeast,9877.6077 +53,female,37.43,1,no,northwest,10959.6947 +19,male,28.4,1,no,southwest,1842.519 +35,male,24.13,1,no,northwest,5125.2157 +48,male,29.7,0,no,southeast,7789.635 +32,female,37.145,3,no,northeast,6334.34355 +42,female,23.37,0,yes,northeast,19964.7463 +40,female,25.46,1,no,northeast,7077.1894 +44,male,39.52,0,no,northwest,6948.7008 +48,male,24.42,0,yes,southeast,21223.6758 +18,male,25.175,0,yes,northeast,15518.18025 +30,male,35.53,0,yes,southeast,36950.2567 +50,female,27.83,3,no,southeast,19749.38338 +42,female,26.6,0,yes,northwest,21348.706 +18,female,36.85,0,yes,southeast,36149.4835 +54,male,39.6,1,no,southwest,10450.552 +32,female,29.8,2,no,southwest,5152.134 +37,male,29.64,0,no,northwest,5028.1466 +47,male,28.215,4,no,northeast,10407.08585 +20,female,37,5,no,southwest,4830.63 +32,female,33.155,3,no,northwest,6128.79745 +19,female,31.825,1,no,northwest,2719.27975 +27,male,18.905,3,no,northeast,4827.90495 +63,male,41.47,0,no,southeast,13405.3903 +49,male,30.3,0,no,southwest,8116.68 +18,male,15.96,0,no,northeast,1694.7964 +35,female,34.8,1,no,southwest,5246.047 +24,female,33.345,0,no,northwest,2855.43755 +63,female,37.7,0,yes,southwest,48824.45 +38,male,27.835,2,no,northwest,6455.86265 +54,male,29.2,1,no,southwest,10436.096 +46,female,28.9,2,no,southwest,8823.279 +41,female,33.155,3,no,northeast,8538.28845 +58,male,28.595,0,no,northwest,11735.87905 +18,female,38.28,0,no,southeast,1631.8212 +22,male,19.95,3,no,northeast,4005.4225 +44,female,26.41,0,no,northwest,7419.4779 +44,male,30.69,2,no,southeast,7731.4271 +36,male,41.895,3,yes,northeast,43753.33705 +26,female,29.92,2,no,southeast,3981.9768 +30,female,30.9,3,no,southwest,5325.651 +41,female,32.2,1,no,southwest,6775.961 +29,female,32.11,2,no,northwest,4922.9159 +61,male,31.57,0,no,southeast,12557.6053 +36,female,26.2,0,no,southwest,4883.866 +25,male,25.74,0,no,southeast,2137.6536 +56,female,26.6,1,no,northwest,12044.342 +18,male,34.43,0,no,southeast,1137.4697 +19,male,30.59,0,no,northwest,1639.5631 +39,female,32.8,0,no,southwest,5649.715 +45,female,28.6,2,no,southeast,8516.829 +51,female,18.05,0,no,northwest,9644.2525 +64,female,39.33,0,no,northeast,14901.5167 +19,female,32.11,0,no,northwest,2130.6759 +48,female,32.23,1,no,southeast,8871.1517 +60,female,24.035,0,no,northwest,13012.20865 +27,female,36.08,0,yes,southeast,37133.8982 +46,male,22.3,0,no,southwest,7147.105 +28,female,28.88,1,no,northeast,4337.7352 +59,male,26.4,0,no,southeast,11743.299 +35,male,27.74,2,yes,northeast,20984.0936 +63,female,31.8,0,no,southwest,13880.949 +40,male,41.23,1,no,northeast,6610.1097 +20,male,33,1,no,southwest,1980.07 +40,male,30.875,4,no,northwest,8162.71625 +24,male,28.5,2,no,northwest,3537.703 +34,female,26.73,1,no,southeast,5002.7827 +45,female,30.9,2,no,southwest,8520.026 +41,female,37.1,2,no,southwest,7371.772 +53,female,26.6,0,no,northwest,10355.641 +27,male,23.1,0,no,southeast,2483.736 +26,female,29.92,1,no,southeast,3392.9768 +24,female,23.21,0,no,southeast,25081.76784 +34,female,33.7,1,no,southwest,5012.471 +53,female,33.25,0,no,northeast,10564.8845 +32,male,30.8,3,no,southwest,5253.524 +19,male,34.8,0,yes,southwest,34779.615 +42,male,24.64,0,yes,southeast,19515.5416 +55,male,33.88,3,no,southeast,11987.1682 +28,male,38.06,0,no,southeast,2689.4954 +58,female,41.91,0,no,southeast,24227.33724 +41,female,31.635,1,no,northeast,7358.17565 +47,male,25.46,2,no,northeast,9225.2564 +42,female,36.195,1,no,northwest,7443.64305 +59,female,27.83,3,no,southeast,14001.2867 +19,female,17.8,0,no,southwest,1727.785 +59,male,27.5,1,no,southwest,12333.828 +39,male,24.51,2,no,northwest,6710.1919 +40,female,22.22,2,yes,southeast,19444.2658 +18,female,26.73,0,no,southeast,1615.7667 +31,male,38.39,2,no,southeast,4463.2051 +19,male,29.07,0,yes,northwest,17352.6803 +44,male,38.06,1,no,southeast,7152.6714 +23,female,36.67,2,yes,northeast,38511.6283 +33,female,22.135,1,no,northeast,5354.07465 +55,female,26.8,1,no,southwest,35160.13457 +40,male,35.3,3,no,southwest,7196.867 +63,female,27.74,0,yes,northeast,29523.1656 +54,male,30.02,0,no,northwest,24476.47851 +60,female,38.06,0,no,southeast,12648.7034 +24,male,35.86,0,no,southeast,1986.9334 +19,male,20.9,1,no,southwest,1832.094 +29,male,28.975,1,no,northeast,4040.55825 +18,male,17.29,2,yes,northeast,12829.4551 +63,female,32.2,2,yes,southwest,47305.305 +54,male,34.21,2,yes,southeast,44260.7499 +27,male,30.3,3,no,southwest,4260.744 +50,male,31.825,0,yes,northeast,41097.16175 +55,female,25.365,3,no,northeast,13047.33235 +56,male,33.63,0,yes,northwest,43921.1837 +38,female,40.15,0,no,southeast,5400.9805 +51,male,24.415,4,no,northwest,11520.09985 +19,male,31.92,0,yes,northwest,33750.2918 +58,female,25.2,0,no,southwest,11837.16 +20,female,26.84,1,yes,southeast,17085.2676 +52,male,24.32,3,yes,northeast,24869.8368 +19,male,36.955,0,yes,northwest,36219.40545 +53,female,38.06,3,no,southeast,20462.99766 +46,male,42.35,3,yes,southeast,46151.1245 +40,male,19.8,1,yes,southeast,17179.522 +59,female,32.395,3,no,northeast,14590.63205 +45,male,30.2,1,no,southwest,7441.053 +49,male,25.84,1,no,northeast,9282.4806 +18,male,29.37,1,no,southeast,1719.4363 +50,male,34.2,2,yes,southwest,42856.838 +41,male,37.05,2,no,northwest,7265.7025 +50,male,27.455,1,no,northeast,9617.66245 +25,male,27.55,0,no,northwest,2523.1695 +47,female,26.6,2,no,northeast,9715.841 +19,male,20.615,2,no,northwest,2803.69785 +22,female,24.3,0,no,southwest,2150.469 +59,male,31.79,2,no,southeast,12928.7911 +51,female,21.56,1,no,southeast,9855.1314 +40,female,28.12,1,yes,northeast,22331.5668 +54,male,40.565,3,yes,northeast,48549.17835 +30,male,27.645,1,no,northeast,4237.12655 +55,female,32.395,1,no,northeast,11879.10405 +52,female,31.2,0,no,southwest,9625.92 +46,male,26.62,1,no,southeast,7742.1098 +46,female,48.07,2,no,northeast,9432.9253 +63,female,26.22,0,no,northwest,14256.1928 +59,female,36.765,1,yes,northeast,47896.79135 +52,male,26.4,3,no,southeast,25992.82104 +28,female,33.4,0,no,southwest,3172.018 +29,male,29.64,1,no,northeast,20277.80751 +25,male,45.54,2,yes,southeast,42112.2356 +22,female,28.82,0,no,southeast,2156.7518 +25,male,26.8,3,no,southwest,3906.127 +18,male,22.99,0,no,northeast,1704.5681 +19,male,27.7,0,yes,southwest,16297.846 +47,male,25.41,1,yes,southeast,21978.6769 +31,male,34.39,3,yes,northwest,38746.3551 +48,female,28.88,1,no,northwest,9249.4952 +36,male,27.55,3,no,northeast,6746.7425 +53,female,22.61,3,yes,northeast,24873.3849 +56,female,37.51,2,no,southeast,12265.5069 +28,female,33,2,no,southeast,4349.462 +57,female,38,2,no,southwest,12646.207 +29,male,33.345,2,no,northwest,19442.3535 +28,female,27.5,2,no,southwest,20177.67113 +30,female,33.33,1,no,southeast,4151.0287 +58,male,34.865,0,no,northeast,11944.59435 +41,female,33.06,2,no,northwest,7749.1564 +50,male,26.6,0,no,southwest,8444.474 +19,female,24.7,0,no,southwest,1737.376 +43,male,35.97,3,yes,southeast,42124.5153 +49,male,35.86,0,no,southeast,8124.4084 +27,female,31.4,0,yes,southwest,34838.873 +52,male,33.25,0,no,northeast,9722.7695 +50,male,32.205,0,no,northwest,8835.26495 +54,male,32.775,0,no,northeast,10435.06525 +44,female,27.645,0,no,northwest,7421.19455 +32,male,37.335,1,no,northeast,4667.60765 +34,male,25.27,1,no,northwest,4894.7533 +26,female,29.64,4,no,northeast,24671.66334 +34,male,30.8,0,yes,southwest,35491.64 +57,male,40.945,0,no,northeast,11566.30055 +29,male,27.2,0,no,southwest,2866.091 +40,male,34.105,1,no,northeast,6600.20595 +27,female,23.21,1,no,southeast,3561.8889 +45,male,36.48,2,yes,northwest,42760.5022 +64,female,33.8,1,yes,southwest,47928.03 +52,male,36.7,0,no,southwest,9144.565 +61,female,36.385,1,yes,northeast,48517.56315 +52,male,27.36,0,yes,northwest,24393.6224 +61,female,31.16,0,no,northwest,13429.0354 +56,female,28.785,0,no,northeast,11658.37915 +43,female,35.72,2,no,northeast,19144.57652 +64,male,34.5,0,no,southwest,13822.803 +60,male,25.74,0,no,southeast,12142.5786 +62,male,27.55,1,no,northwest,13937.6665 +50,male,32.3,1,yes,northeast,41919.097 +46,female,27.72,1,no,southeast,8232.6388 +24,female,27.6,0,no,southwest,18955.22017 +62,male,30.02,0,no,northwest,13352.0998 +60,female,27.55,0,no,northeast,13217.0945 +63,male,36.765,0,no,northeast,13981.85035 +49,female,41.47,4,no,southeast,10977.2063 +34,female,29.26,3,no,southeast,6184.2994 +33,male,35.75,2,no,southeast,4889.9995 +46,male,33.345,1,no,northeast,8334.45755 +36,female,29.92,1,no,southeast,5478.0368 +19,male,27.835,0,no,northwest,1635.73365 +57,female,23.18,0,no,northwest,11830.6072 +50,female,25.6,0,no,southwest,8932.084 +30,female,27.7,0,no,southwest,3554.203 +33,male,35.245,0,no,northeast,12404.8791 +18,female,38.28,0,no,southeast,14133.03775 +46,male,27.6,0,no,southwest,24603.04837 +46,male,43.89,3,no,southeast,8944.1151 +47,male,29.83,3,no,northwest,9620.3307 +23,male,41.91,0,no,southeast,1837.2819 +18,female,20.79,0,no,southeast,1607.5101 +48,female,32.3,2,no,northeast,10043.249 +35,male,30.5,1,no,southwest,4751.07 +19,female,21.7,0,yes,southwest,13844.506 +21,female,26.4,1,no,southwest,2597.779 +21,female,21.89,2,no,southeast,3180.5101 +49,female,30.78,1,no,northeast,9778.3472 +56,female,32.3,3,no,northeast,13430.265 +42,female,24.985,2,no,northwest,8017.06115 +44,male,32.015,2,no,northwest,8116.26885 +18,male,30.4,3,no,northeast,3481.868 +61,female,21.09,0,no,northwest,13415.0381 +57,female,22.23,0,no,northeast,12029.2867 +42,female,33.155,1,no,northeast,7639.41745 +26,male,32.9,2,yes,southwest,36085.219 +20,male,33.33,0,no,southeast,1391.5287 +23,female,28.31,0,yes,northwest,18033.9679 +39,female,24.89,3,yes,northeast,21659.9301 +24,male,40.15,0,yes,southeast,38126.2465 +64,female,30.115,3,no,northwest,16455.70785 +62,male,31.46,1,no,southeast,27000.98473 +27,female,17.955,2,yes,northeast,15006.57945 +55,male,30.685,0,yes,northeast,42303.69215 +55,male,33,0,no,southeast,20781.48892 +35,female,43.34,2,no,southeast,5846.9176 +44,male,22.135,2,no,northeast,8302.53565 +19,male,34.4,0,no,southwest,1261.859 +58,female,39.05,0,no,southeast,11856.4115 +50,male,25.365,2,no,northwest,30284.64294 +26,female,22.61,0,no,northwest,3176.8159 +24,female,30.21,3,no,northwest,4618.0799 +48,male,35.625,4,no,northeast,10736.87075 +19,female,37.43,0,no,northwest,2138.0707 +48,male,31.445,1,no,northeast,8964.06055 +49,male,31.35,1,no,northeast,9290.1395 +46,female,32.3,2,no,northeast,9411.005 +46,male,19.855,0,no,northwest,7526.70645 +43,female,34.4,3,no,southwest,8522.003 +21,male,31.02,0,no,southeast,16586.49771 +64,male,25.6,2,no,southwest,14988.432 +18,female,38.17,0,no,southeast,1631.6683 +51,female,20.6,0,no,southwest,9264.797 +47,male,47.52,1,no,southeast,8083.9198 +64,female,32.965,0,no,northwest,14692.66935 +49,male,32.3,3,no,northwest,10269.46 +31,male,20.4,0,no,southwest,3260.199 +52,female,38.38,2,no,northeast,11396.9002 +33,female,24.31,0,no,southeast,4185.0979 +47,female,23.6,1,no,southwest,8539.671 +38,male,21.12,3,no,southeast,6652.5288 +32,male,30.03,1,no,southeast,4074.4537 +19,male,17.48,0,no,northwest,1621.3402 +44,female,20.235,1,yes,northeast,19594.80965 +26,female,17.195,2,yes,northeast,14455.64405 +25,male,23.9,5,no,southwest,5080.096 +19,female,35.15,0,no,northwest,2134.9015 +43,female,35.64,1,no,southeast,7345.7266 +52,male,34.1,0,no,southeast,9140.951 +36,female,22.6,2,yes,southwest,18608.262 +64,male,39.16,1,no,southeast,14418.2804 +63,female,26.98,0,yes,northwest,28950.4692 +64,male,33.88,0,yes,southeast,46889.2612 +61,male,35.86,0,yes,southeast,46599.1084 +40,male,32.775,1,yes,northeast,39125.33225 +25,male,30.59,0,no,northeast,2727.3951 +48,male,30.2,2,no,southwest,8968.33 +45,male,24.31,5,no,southeast,9788.8659 +38,female,27.265,1,no,northeast,6555.07035 +18,female,29.165,0,no,northeast,7323.734819 +21,female,16.815,1,no,northeast,3167.45585 +27,female,30.4,3,no,northwest,18804.7524 +19,male,33.1,0,no,southwest,23082.95533 +29,female,20.235,2,no,northwest,4906.40965 +42,male,26.9,0,no,southwest,5969.723 +60,female,30.5,0,no,southwest,12638.195 +31,male,28.595,1,no,northwest,4243.59005 +60,male,33.11,3,no,southeast,13919.8229 +22,male,31.73,0,no,northeast,2254.7967 +35,male,28.9,3,no,southwest,5926.846 +52,female,46.75,5,no,southeast,12592.5345 +26,male,29.45,0,no,northeast,2897.3235 +31,female,32.68,1,no,northwest,4738.2682 +33,female,33.5,0,yes,southwest,37079.372 +18,male,43.01,0,no,southeast,1149.3959 +59,female,36.52,1,no,southeast,28287.89766 +56,male,26.695,1,yes,northwest,26109.32905 +45,female,33.1,0,no,southwest,7345.084 +60,male,29.64,0,no,northeast,12730.9996 +56,female,25.65,0,no,northwest,11454.0215 +40,female,29.6,0,no,southwest,5910.944 +35,male,38.6,1,no,southwest,4762.329 +39,male,29.6,4,no,southwest,7512.267 +30,male,24.13,1,no,northwest,4032.2407 +24,male,23.4,0,no,southwest,1969.614 +20,male,29.735,0,no,northwest,1769.53165 +32,male,46.53,2,no,southeast,4686.3887 +59,male,37.4,0,no,southwest,21797.0004 +55,female,30.14,2,no,southeast,11881.9696 +57,female,30.495,0,no,northwest,11840.77505 +56,male,39.6,0,no,southwest,10601.412 +40,female,33,3,no,southeast,7682.67 +49,female,36.63,3,no,southeast,10381.4787 +42,male,30,0,yes,southwest,22144.032 +62,female,38.095,2,no,northeast,15230.32405 +56,male,25.935,0,no,northeast,11165.41765 +19,male,25.175,0,no,northwest,1632.03625 +30,female,28.38,1,yes,southeast,19521.9682 +60,female,28.7,1,no,southwest,13224.693 +56,female,33.82,2,no,northwest,12643.3778 +28,female,24.32,1,no,northeast,23288.9284 +18,female,24.09,1,no,southeast,2201.0971 +27,male,32.67,0,no,southeast,2497.0383 +18,female,30.115,0,no,northeast,2203.47185 +19,female,29.8,0,no,southwest,1744.465 +47,female,33.345,0,no,northeast,20878.78443 +54,male,25.1,3,yes,southwest,25382.297 +61,male,28.31,1,yes,northwest,28868.6639 +24,male,28.5,0,yes,northeast,35147.52848 +25,male,35.625,0,no,northwest,2534.39375 +21,male,36.85,0,no,southeast,1534.3045 +23,male,32.56,0,no,southeast,1824.2854 +63,male,41.325,3,no,northwest,15555.18875 +49,male,37.51,2,no,southeast,9304.7019 +18,female,31.35,0,no,southeast,1622.1885 +51,female,39.5,1,no,southwest,9880.068 +48,male,34.3,3,no,southwest,9563.029 +31,female,31.065,0,no,northeast,4347.02335 +54,female,21.47,3,no,northwest,12475.3513 +19,male,28.7,0,no,southwest,1253.936 +44,female,38.06,0,yes,southeast,48885.13561 +53,male,31.16,1,no,northwest,10461.9794 +19,female,32.9,0,no,southwest,1748.774 +61,female,25.08,0,no,southeast,24513.09126 +18,female,25.08,0,no,northeast,2196.4732 +61,male,43.4,0,no,southwest,12574.049 +21,male,25.7,4,yes,southwest,17942.106 +20,male,27.93,0,no,northeast,1967.0227 +31,female,23.6,2,no,southwest,4931.647 +45,male,28.7,2,no,southwest,8027.968 +44,female,23.98,2,no,southeast,8211.1002 +62,female,39.2,0,no,southwest,13470.86 +29,male,34.4,0,yes,southwest,36197.699 +43,male,26.03,0,no,northeast,6837.3687 +51,male,23.21,1,yes,southeast,22218.1149 +19,male,30.25,0,yes,southeast,32548.3405 +38,female,28.93,1,no,southeast,5974.3847 +37,male,30.875,3,no,northwest,6796.86325 +22,male,31.35,1,no,northwest,2643.2685 +21,male,23.75,2,no,northwest,3077.0955 +24,female,25.27,0,no,northeast,3044.2133 +57,female,28.7,0,no,southwest,11455.28 +56,male,32.11,1,no,northeast,11763.0009 +27,male,33.66,0,no,southeast,2498.4144 +51,male,22.42,0,no,northeast,9361.3268 +19,male,30.4,0,no,southwest,1256.299 +39,male,28.3,1,yes,southwest,21082.16 +58,male,35.7,0,no,southwest,11362.755 +20,male,35.31,1,no,southeast,27724.28875 +45,male,30.495,2,no,northwest,8413.46305 +35,female,31,1,no,southwest,5240.765 +31,male,30.875,0,no,northeast,3857.75925 +50,female,27.36,0,no,northeast,25656.57526 +32,female,44.22,0,no,southeast,3994.1778 +51,female,33.915,0,no,northeast,9866.30485 +38,female,37.73,0,no,southeast,5397.6167 +42,male,26.07,1,yes,southeast,38245.59327 +18,female,33.88,0,no,southeast,11482.63485 +19,female,30.59,2,no,northwest,24059.68019 +51,female,25.8,1,no,southwest,9861.025 +46,male,39.425,1,no,northeast,8342.90875 +18,male,25.46,0,no,northeast,1708.0014 +57,male,42.13,1,yes,southeast,48675.5177 +62,female,31.73,0,no,northeast,14043.4767 +59,male,29.7,2,no,southeast,12925.886 +37,male,36.19,0,no,southeast,19214.70553 +64,male,40.48,0,no,southeast,13831.1152 +38,male,28.025,1,no,northeast,6067.12675 +33,female,38.9,3,no,southwest,5972.378 +46,female,30.2,2,no,southwest,8825.086 +46,female,28.05,1,no,southeast,8233.0975 +53,male,31.35,0,no,southeast,27346.04207 +34,female,38,3,no,southwest,6196.448 +20,female,31.79,2,no,southeast,3056.3881 +63,female,36.3,0,no,southeast,13887.204 +54,female,47.41,0,yes,southeast,63770.42801 +54,male,30.21,0,no,northwest,10231.4999 +49,male,25.84,2,yes,northwest,23807.2406 +28,male,35.435,0,no,northeast,3268.84665 +54,female,46.7,2,no,southwest,11538.421 +25,female,28.595,0,no,northeast,3213.62205 +43,female,46.2,0,yes,southeast,45863.205 +63,male,30.8,0,no,southwest,13390.559 +32,female,28.93,0,no,southeast,3972.9247 +62,male,21.4,0,no,southwest,12957.118 +52,female,31.73,2,no,northwest,11187.6567 +25,female,41.325,0,no,northeast,17878.90068 +28,male,23.8,2,no,southwest,3847.674 +46,male,33.44,1,no,northeast,8334.5896 +34,male,34.21,0,no,southeast,3935.1799 +35,female,34.105,3,yes,northwest,39983.42595 +19,male,35.53,0,no,northwest,1646.4297 +46,female,19.95,2,no,northwest,9193.8385 +54,female,32.68,0,no,northeast,10923.9332 +27,male,30.5,0,no,southwest,2494.022 +50,male,44.77,1,no,southeast,9058.7303 +18,female,32.12,2,no,southeast,2801.2588 +19,female,30.495,0,no,northwest,2128.43105 +38,female,40.565,1,no,northwest,6373.55735 +41,male,30.59,2,no,northwest,7256.7231 +49,female,31.9,5,no,southwest,11552.904 +48,male,40.565,2,yes,northwest,45702.02235 +31,female,29.1,0,no,southwest,3761.292 +18,female,37.29,1,no,southeast,2219.4451 +30,female,43.12,2,no,southeast,4753.6368 +62,female,36.86,1,no,northeast,31620.00106 +57,female,34.295,2,no,northeast,13224.05705 +58,female,27.17,0,no,northwest,12222.8983 +22,male,26.84,0,no,southeast,1664.9996 +31,female,38.095,1,yes,northeast,58571.07448 +52,male,30.2,1,no,southwest,9724.53 +25,female,23.465,0,no,northeast,3206.49135 +59,male,25.46,1,no,northeast,12913.9924 +19,male,30.59,0,no,northwest,1639.5631 +39,male,45.43,2,no,southeast,6356.2707 +32,female,23.65,1,no,southeast,17626.23951 +19,male,20.7,0,no,southwest,1242.816 +33,female,28.27,1,no,southeast,4779.6023 +21,male,20.235,3,no,northeast,3861.20965 +34,female,30.21,1,yes,northwest,43943.8761 +61,female,35.91,0,no,northeast,13635.6379 +38,female,30.69,1,no,southeast,5976.8311 +58,female,29,0,no,southwest,11842.442 +47,male,19.57,1,no,northwest,8428.0693 +20,male,31.13,2,no,southeast,2566.4707 +21,female,21.85,1,yes,northeast,15359.1045 +41,male,40.26,0,no,southeast,5709.1644 +46,female,33.725,1,no,northeast,8823.98575 +42,female,29.48,2,no,southeast,7640.3092 +34,female,33.25,1,no,northeast,5594.8455 +43,male,32.6,2,no,southwest,7441.501 +52,female,37.525,2,no,northwest,33471.97189 +18,female,39.16,0,no,southeast,1633.0444 +51,male,31.635,0,no,northwest,9174.13565 +56,female,25.3,0,no,southwest,11070.535 +64,female,39.05,3,no,southeast,16085.1275 +19,female,28.31,0,yes,northwest,17468.9839 +51,female,34.1,0,no,southeast,9283.562 +27,female,25.175,0,no,northeast,3558.62025 +59,female,23.655,0,yes,northwest,25678.77845 +28,male,26.98,2,no,northeast,4435.0942 +30,male,37.8,2,yes,southwest,39241.442 +47,female,29.37,1,no,southeast,8547.6913 +38,female,34.8,2,no,southwest,6571.544 +18,female,33.155,0,no,northeast,2207.69745 +34,female,19,3,no,northeast,6753.038 +20,female,33,0,no,southeast,1880.07 +47,female,36.63,1,yes,southeast,42969.8527 +56,female,28.595,0,no,northeast,11658.11505 +49,male,25.6,2,yes,southwest,23306.547 +19,female,33.11,0,yes,southeast,34439.8559 +55,female,37.1,0,no,southwest,10713.644 +30,male,31.4,1,no,southwest,3659.346 +37,male,34.1,4,yes,southwest,40182.246 +49,female,21.3,1,no,southwest,9182.17 +18,male,33.535,0,yes,northeast,34617.84065 +59,male,28.785,0,no,northwest,12129.61415 +29,female,26.03,0,no,northwest,3736.4647 +36,male,28.88,3,no,northeast,6748.5912 +33,male,42.46,1,no,southeast,11326.71487 +58,male,38,0,no,southwest,11365.952 +44,female,38.95,0,yes,northwest,42983.4585 +53,male,36.1,1,no,southwest,10085.846 +24,male,29.3,0,no,southwest,1977.815 +29,female,35.53,0,no,southeast,3366.6697 +40,male,22.705,2,no,northeast,7173.35995 +51,male,39.7,1,no,southwest,9391.346 +64,male,38.19,0,no,northeast,14410.9321 +19,female,24.51,1,no,northwest,2709.1119 +35,female,38.095,2,no,northeast,24915.04626 +39,male,26.41,0,yes,northeast,20149.3229 +56,male,33.66,4,no,southeast,12949.1554 +33,male,42.4,5,no,southwest,6666.243 +42,male,28.31,3,yes,northwest,32787.45859 +61,male,33.915,0,no,northeast,13143.86485 +23,female,34.96,3,no,northwest,4466.6214 +43,male,35.31,2,no,southeast,18806.14547 +48,male,30.78,3,no,northeast,10141.1362 +39,male,26.22,1,no,northwest,6123.5688 +40,female,23.37,3,no,northeast,8252.2843 +18,male,28.5,0,no,northeast,1712.227 +58,female,32.965,0,no,northeast,12430.95335 +49,female,42.68,2,no,southeast,9800.8882 +53,female,39.6,1,no,southeast,10579.711 +48,female,31.13,0,no,southeast,8280.6227 +45,female,36.3,2,no,southeast,8527.532 +59,female,35.2,0,no,southeast,12244.531 +52,female,25.3,2,yes,southeast,24667.419 +26,female,42.4,1,no,southwest,3410.324 +27,male,33.155,2,no,northwest,4058.71245 +48,female,35.91,1,no,northeast,26392.26029 +57,female,28.785,4,no,northeast,14394.39815 +37,male,46.53,3,no,southeast,6435.6237 +57,female,23.98,1,no,southeast,22192.43711 +32,female,31.54,1,no,northeast,5148.5526 +18,male,33.66,0,no,southeast,1136.3994 +64,female,22.99,0,yes,southeast,27037.9141 +43,male,38.06,2,yes,southeast,42560.4304 +49,male,28.7,1,no,southwest,8703.456 +40,female,32.775,2,yes,northwest,40003.33225 +62,male,32.015,0,yes,northeast,45710.20785 +40,female,29.81,1,no,southeast,6500.2359 +30,male,31.57,3,no,southeast,4837.5823 +29,female,31.16,0,no,northeast,3943.5954 +36,male,29.7,0,no,southeast,4399.731 +41,female,31.02,0,no,southeast,6185.3208 +44,female,43.89,2,yes,southeast,46200.9851 +45,male,21.375,0,no,northwest,7222.78625 +55,female,40.81,3,no,southeast,12485.8009 +60,male,31.35,3,yes,northwest,46130.5265 +56,male,36.1,3,no,southwest,12363.547 +49,female,23.18,2,no,northwest,10156.7832 +21,female,17.4,1,no,southwest,2585.269 +19,male,20.3,0,no,southwest,1242.26 +39,male,35.3,2,yes,southwest,40103.89 +53,male,24.32,0,no,northwest,9863.4718 +33,female,18.5,1,no,southwest,4766.022 +53,male,26.41,2,no,northeast,11244.3769 +42,male,26.125,2,no,northeast,7729.64575 +40,male,41.69,0,no,southeast,5438.7491 +47,female,24.1,1,no,southwest,26236.57997 +27,male,31.13,1,yes,southeast,34806.4677 +21,male,27.36,0,no,northeast,2104.1134 +47,male,36.2,1,no,southwest,8068.185 +20,male,32.395,1,no,northwest,2362.22905 +24,male,23.655,0,no,northwest,2352.96845 +27,female,34.8,1,no,southwest,3577.999 +26,female,40.185,0,no,northwest,3201.24515 +53,female,32.3,2,no,northeast,29186.48236 +41,male,35.75,1,yes,southeast,40273.6455 +56,male,33.725,0,no,northwest,10976.24575 +23,female,39.27,2,no,southeast,3500.6123 +21,female,34.87,0,no,southeast,2020.5523 +50,female,44.745,0,no,northeast,9541.69555 +53,male,41.47,0,no,southeast,9504.3103 +34,female,26.41,1,no,northwest,5385.3379 +47,female,29.545,1,no,northwest,8930.93455 +33,female,32.9,2,no,southwest,5375.038 +51,female,38.06,0,yes,southeast,44400.4064 +49,male,28.69,3,no,northwest,10264.4421 +31,female,30.495,3,no,northeast,6113.23105 +36,female,27.74,0,no,northeast,5469.0066 +18,male,35.2,1,no,southeast,1727.54 +50,female,23.54,2,no,southeast,10107.2206 +43,female,30.685,2,no,northwest,8310.83915 +20,male,40.47,0,no,northeast,1984.4533 +24,female,22.6,0,no,southwest,2457.502 +60,male,28.9,0,no,southwest,12146.971 +49,female,22.61,1,no,northwest,9566.9909 +60,male,24.32,1,no,northwest,13112.6048 +51,female,36.67,2,no,northwest,10848.1343 +58,female,33.44,0,no,northwest,12231.6136 +51,female,40.66,0,no,northeast,9875.6804 +53,male,36.6,3,no,southwest,11264.541 +62,male,37.4,0,no,southwest,12979.358 +19,male,35.4,0,no,southwest,1263.249 +50,female,27.075,1,no,northeast,10106.13425 +30,female,39.05,3,yes,southeast,40932.4295 +41,male,28.405,1,no,northwest,6664.68595 +29,female,21.755,1,yes,northeast,16657.71745 +18,female,40.28,0,no,northeast,2217.6012 +41,female,36.08,1,no,southeast,6781.3542 +35,male,24.42,3,yes,southeast,19361.9988 +53,male,21.4,1,no,southwest,10065.413 +24,female,30.1,3,no,southwest,4234.927 +48,female,27.265,1,no,northeast,9447.25035 +59,female,32.1,3,no,southwest,14007.222 +49,female,34.77,1,no,northwest,9583.8933 +37,female,38.39,0,yes,southeast,40419.0191 +26,male,23.7,2,no,southwest,3484.331 +23,male,31.73,3,yes,northeast,36189.1017 +29,male,35.5,2,yes,southwest,44585.45587 +45,male,24.035,2,no,northeast,8604.48365 +27,male,29.15,0,yes,southeast,18246.4955 +53,male,34.105,0,yes,northeast,43254.41795 +31,female,26.62,0,no,southeast,3757.8448 +50,male,26.41,0,no,northwest,8827.2099 +50,female,30.115,1,no,northwest,9910.35985 +34,male,27,2,no,southwest,11737.84884 +19,male,21.755,0,no,northwest,1627.28245 +47,female,36,1,no,southwest,8556.907 +28,male,30.875,0,no,northwest,3062.50825 +37,female,26.4,0,yes,southeast,19539.243 +21,male,28.975,0,no,northwest,1906.35825 +64,male,37.905,0,no,northwest,14210.53595 +58,female,22.77,0,no,southeast,11833.7823 +24,male,33.63,4,no,northeast,17128.42608 +31,male,27.645,2,no,northeast,5031.26955 +39,female,22.8,3,no,northeast,7985.815 +47,female,27.83,0,yes,southeast,23065.4207 +30,male,37.43,3,no,northeast,5428.7277 +18,male,38.17,0,yes,southeast,36307.7983 +22,female,34.58,2,no,northeast,3925.7582 +23,male,35.2,1,no,southwest,2416.955 +33,male,27.1,1,yes,southwest,19040.876 +27,male,26.03,0,no,northeast,3070.8087 +45,female,25.175,2,no,northeast,9095.06825 +57,female,31.825,0,no,northwest,11842.62375 +47,male,32.3,1,no,southwest,8062.764 +42,female,29,1,no,southwest,7050.642 +64,female,39.7,0,no,southwest,14319.031 +38,female,19.475,2,no,northwest,6933.24225 +61,male,36.1,3,no,southwest,27941.28758 +53,female,26.7,2,no,southwest,11150.78 +44,female,36.48,0,no,northeast,12797.20962 +19,female,28.88,0,yes,northwest,17748.5062 +41,male,34.2,2,no,northwest,7261.741 +51,male,33.33,3,no,southeast,10560.4917 +40,male,32.3,2,no,northwest,6986.697 +45,male,39.805,0,no,northeast,7448.40395 +35,male,34.32,3,no,southeast,5934.3798 +53,male,28.88,0,no,northwest,9869.8102 +30,male,24.4,3,yes,southwest,18259.216 +18,male,41.14,0,no,southeast,1146.7966 +51,male,35.97,1,no,southeast,9386.1613 +50,female,27.6,1,yes,southwest,24520.264 +31,female,29.26,1,no,southeast,4350.5144 +35,female,27.7,3,no,southwest,6414.178 +60,male,36.955,0,no,northeast,12741.16745 +21,male,36.86,0,no,northwest,1917.3184 +29,male,22.515,3,no,northeast,5209.57885 +62,female,29.92,0,no,southeast,13457.9608 +39,female,41.8,0,no,southeast,5662.225 +19,male,27.6,0,no,southwest,1252.407 +22,female,23.18,0,no,northeast,2731.9122 +53,male,20.9,0,yes,southeast,21195.818 +39,female,31.92,2,no,northwest,7209.4918 +27,male,28.5,0,yes,northwest,18310.742 +30,male,44.22,2,no,southeast,4266.1658 +30,female,22.895,1,no,northeast,4719.52405 +58,female,33.1,0,no,southwest,11848.141 +33,male,24.795,0,yes,northeast,17904.52705 +42,female,26.18,1,no,southeast,7046.7222 +64,female,35.97,0,no,southeast,14313.8463 +21,male,22.3,1,no,southwest,2103.08 +18,female,42.24,0,yes,southeast,38792.6856 +23,male,26.51,0,no,southeast,1815.8759 +45,female,35.815,0,no,northwest,7731.85785 +40,female,41.42,1,no,northwest,28476.73499 +19,female,36.575,0,no,northwest,2136.88225 +18,male,30.14,0,no,southeast,1131.5066 +25,male,25.84,1,no,northeast,3309.7926 +46,female,30.8,3,no,southwest,9414.92 +33,female,42.94,3,no,northwest,6360.9936 +54,male,21.01,2,no,southeast,11013.7119 +28,male,22.515,2,no,northeast,4428.88785 +36,male,34.43,2,no,southeast,5584.3057 +20,female,31.46,0,no,southeast,1877.9294 +24,female,24.225,0,no,northwest,2842.76075 +23,male,37.1,3,no,southwest,3597.596 +47,female,26.125,1,yes,northeast,23401.30575 +33,female,35.53,0,yes,northwest,55135.40209 +45,male,33.7,1,no,southwest,7445.918 +26,male,17.67,0,no,northwest,2680.9493 +18,female,31.13,0,no,southeast,1621.8827 +44,female,29.81,2,no,southeast,8219.2039 +60,male,24.32,0,no,northwest,12523.6048 +64,female,31.825,2,no,northeast,16069.08475 +56,male,31.79,2,yes,southeast,43813.8661 +36,male,28.025,1,yes,northeast,20773.62775 +41,male,30.78,3,yes,northeast,39597.4072 +39,male,21.85,1,no,northwest,6117.4945 +63,male,33.1,0,no,southwest,13393.756 +36,female,25.84,0,no,northwest,5266.3656 +28,female,23.845,2,no,northwest,4719.73655 +58,male,34.39,0,no,northwest,11743.9341 +36,male,33.82,1,no,northwest,5377.4578 +42,male,35.97,2,no,southeast,7160.3303 +36,male,31.5,0,no,southwest,4402.233 +56,female,28.31,0,no,northeast,11657.7189 +35,female,23.465,2,no,northeast,6402.29135 +59,female,31.35,0,no,northwest,12622.1795 +21,male,31.1,0,no,southwest,1526.312 +59,male,24.7,0,no,northeast,12323.936 +23,female,32.78,2,yes,southeast,36021.0112 +57,female,29.81,0,yes,southeast,27533.9129 +53,male,30.495,0,no,northeast,10072.05505 +60,female,32.45,0,yes,southeast,45008.9555 +51,female,34.2,1,no,southwest,9872.701 +23,male,50.38,1,no,southeast,2438.0552 +27,female,24.1,0,no,southwest,2974.126 +55,male,32.775,0,no,northwest,10601.63225 +37,female,30.78,0,yes,northeast,37270.1512 +61,male,32.3,2,no,northwest,14119.62 +46,female,35.53,0,yes,northeast,42111.6647 +53,female,23.75,2,no,northeast,11729.6795 +49,female,23.845,3,yes,northeast,24106.91255 +20,female,29.6,0,no,southwest,1875.344 +48,female,33.11,0,yes,southeast,40974.1649 +25,male,24.13,0,yes,northwest,15817.9857 +25,female,32.23,1,no,southeast,18218.16139 +57,male,28.1,0,no,southwest,10965.446 +37,female,47.6,2,yes,southwest,46113.511 +38,female,28,3,no,southwest,7151.092 +55,female,33.535,2,no,northwest,12269.68865 +36,female,19.855,0,no,northeast,5458.04645 +51,male,25.4,0,no,southwest,8782.469 +40,male,29.9,2,no,southwest,6600.361 +18,male,37.29,0,no,southeast,1141.4451 +57,male,43.7,1,no,southwest,11576.13 +61,male,23.655,0,no,northeast,13129.60345 +25,female,24.3,3,no,southwest,4391.652 +50,male,36.2,0,no,southwest,8457.818 +26,female,29.48,1,no,southeast,3392.3652 +42,male,24.86,0,no,southeast,5966.8874 +43,male,30.1,1,no,southwest,6849.026 +44,male,21.85,3,no,northeast,8891.1395 +23,female,28.12,0,no,northwest,2690.1138 +49,female,27.1,1,no,southwest,26140.3603 +33,male,33.44,5,no,southeast,6653.7886 +41,male,28.8,1,no,southwest,6282.235 +37,female,29.5,2,no,southwest,6311.952 +22,male,34.8,3,no,southwest,3443.064 +23,male,27.36,1,no,northwest,2789.0574 +21,female,22.135,0,no,northeast,2585.85065 +51,female,37.05,3,yes,northeast,46255.1125 +25,male,26.695,4,no,northwest,4877.98105 +32,male,28.93,1,yes,southeast,19719.6947 +57,male,28.975,0,yes,northeast,27218.43725 +36,female,30.02,0,no,northwest,5272.1758 +22,male,39.5,0,no,southwest,1682.597 +57,male,33.63,1,no,northwest,11945.1327 +64,female,26.885,0,yes,northwest,29330.98315 +36,female,29.04,4,no,southeast,7243.8136 +54,male,24.035,0,no,northeast,10422.91665 +47,male,38.94,2,yes,southeast,44202.6536 +62,male,32.11,0,no,northeast,13555.0049 +61,female,44,0,no,southwest,13063.883 +43,female,20.045,2,yes,northeast,19798.05455 +19,male,25.555,1,no,northwest,2221.56445 +18,female,40.26,0,no,southeast,1634.5734 +19,female,22.515,0,no,northwest,2117.33885 +49,male,22.515,0,no,northeast,8688.85885 +60,male,40.92,0,yes,southeast,48673.5588 +26,male,27.265,3,no,northeast,4661.28635 +49,male,36.85,0,no,southeast,8125.7845 +60,female,35.1,0,no,southwest,12644.589 +26,female,29.355,2,no,northeast,4564.19145 +27,male,32.585,3,no,northeast,4846.92015 +44,female,32.34,1,no,southeast,7633.7206 +63,male,39.8,3,no,southwest,15170.069 +32,female,24.6,0,yes,southwest,17496.306 +22,male,28.31,1,no,northwest,2639.0429 +18,male,31.73,0,yes,northeast,33732.6867 +59,female,26.695,3,no,northwest,14382.70905 +44,female,27.5,1,no,southwest,7626.993 +33,male,24.605,2,no,northwest,5257.50795 +24,female,33.99,0,no,southeast,2473.3341 +43,female,26.885,0,yes,northwest,21774.32215 +45,male,22.895,0,yes,northeast,35069.37452 +61,female,28.2,0,no,southwest,13041.921 +35,female,34.21,1,no,southeast,5245.2269 +62,female,25,0,no,southwest,13451.122 +62,female,33.2,0,no,southwest,13462.52 +38,male,31,1,no,southwest,5488.262 +34,male,35.815,0,no,northwest,4320.41085 +43,male,23.2,0,no,southwest,6250.435 +50,male,32.11,2,no,northeast,25333.33284 +19,female,23.4,2,no,southwest,2913.569 +57,female,20.1,1,no,southwest,12032.326 +62,female,39.16,0,no,southeast,13470.8044 +41,male,34.21,1,no,southeast,6289.7549 +26,male,46.53,1,no,southeast,2927.0647 +39,female,32.5,1,no,southwest,6238.298 +46,male,25.8,5,no,southwest,10096.97 +45,female,35.3,0,no,southwest,7348.142 +32,male,37.18,2,no,southeast,4673.3922 +59,female,27.5,0,no,southwest,12233.828 +44,male,29.735,2,no,northeast,32108.66282 +39,female,24.225,5,no,northwest,8965.79575 +18,male,26.18,2,no,southeast,2304.0022 +53,male,29.48,0,no,southeast,9487.6442 +18,male,23.21,0,no,southeast,1121.8739 +50,female,46.09,1,no,southeast,9549.5651 +18,female,40.185,0,no,northeast,2217.46915 +19,male,22.61,0,no,northwest,1628.4709 +62,male,39.93,0,no,southeast,12982.8747 +56,female,35.8,1,no,southwest,11674.13 +42,male,35.8,2,no,southwest,7160.094 +37,male,34.2,1,yes,northeast,39047.285 +42,male,31.255,0,no,northwest,6358.77645 +25,male,29.7,3,yes,southwest,19933.458 +57,male,18.335,0,no,northeast,11534.87265 +51,male,42.9,2,yes,southeast,47462.894 +30,female,28.405,1,no,northwest,4527.18295 +44,male,30.2,2,yes,southwest,38998.546 +34,male,27.835,1,yes,northwest,20009.63365 +31,male,39.49,1,no,southeast,3875.7341 +54,male,30.8,1,yes,southeast,41999.52 +24,male,26.79,1,no,northwest,12609.88702 +43,male,34.96,1,yes,northeast,41034.2214 +48,male,36.67,1,no,northwest,28468.91901 +19,female,39.615,1,no,northwest,2730.10785 +29,female,25.9,0,no,southwest,3353.284 +63,female,35.2,1,no,southeast,14474.675 +46,male,24.795,3,no,northeast,9500.57305 +52,male,36.765,2,no,northwest,26467.09737 +35,male,27.1,1,no,southwest,4746.344 +51,male,24.795,2,yes,northwest,23967.38305 +44,male,25.365,1,no,northwest,7518.02535 +21,male,25.745,2,no,northeast,3279.86855 +39,female,34.32,5,no,southeast,8596.8278 +50,female,28.16,3,no,southeast,10702.6424 +34,female,23.56,0,no,northeast,4992.3764 +22,female,20.235,0,no,northwest,2527.81865 +19,female,40.5,0,no,southwest,1759.338 +26,male,35.42,0,no,southeast,2322.6218 +29,male,22.895,0,yes,northeast,16138.76205 +48,male,40.15,0,no,southeast,7804.1605 +26,male,29.15,1,no,southeast,2902.9065 +45,female,39.995,3,no,northeast,9704.66805 +36,female,29.92,0,no,southeast,4889.0368 +54,male,25.46,1,no,northeast,25517.11363 +34,male,21.375,0,no,northeast,4500.33925 +31,male,25.9,3,yes,southwest,19199.944 +27,female,30.59,1,no,northeast,16796.41194 +20,male,30.115,5,no,northeast,4915.05985 +44,female,25.8,1,no,southwest,7624.63 +43,male,30.115,3,no,northwest,8410.04685 +45,female,27.645,1,no,northwest,28340.18885 +34,male,34.675,0,no,northeast,4518.82625 +24,female,20.52,0,yes,northeast,14571.8908 +26,female,19.8,1,no,southwest,3378.91 +38,female,27.835,2,no,northeast,7144.86265 +50,female,31.6,2,no,southwest,10118.424 +38,male,28.27,1,no,southeast,5484.4673 +27,female,20.045,3,yes,northwest,16420.49455 +39,female,23.275,3,no,northeast,7986.47525 +39,female,34.1,3,no,southwest,7418.522 +63,female,36.85,0,no,southeast,13887.9685 +33,female,36.29,3,no,northeast,6551.7501 +36,female,26.885,0,no,northwest,5267.81815 +30,male,22.99,2,yes,northwest,17361.7661 +24,male,32.7,0,yes,southwest,34472.841 +24,male,25.8,0,no,southwest,1972.95 +48,male,29.6,0,no,southwest,21232.18226 +47,male,19.19,1,no,northeast,8627.5411 +29,male,31.73,2,no,northwest,4433.3877 +28,male,29.26,2,no,northeast,4438.2634 +47,male,28.215,3,yes,northwest,24915.22085 +25,male,24.985,2,no,northeast,23241.47453 +51,male,27.74,1,no,northeast,9957.7216 +48,female,22.8,0,no,southwest,8269.044 +43,male,20.13,2,yes,southeast,18767.7377 +61,female,33.33,4,no,southeast,36580.28216 +48,male,32.3,1,no,northwest,8765.249 +38,female,27.6,0,no,southwest,5383.536 +59,male,25.46,0,no,northwest,12124.9924 +19,female,24.605,1,no,northwest,2709.24395 +26,female,34.2,2,no,southwest,3987.926 +54,female,35.815,3,no,northwest,12495.29085 +21,female,32.68,2,no,northwest,26018.95052 +51,male,37,0,no,southwest,8798.593 +22,female,31.02,3,yes,southeast,35595.5898 +47,male,36.08,1,yes,southeast,42211.1382 +18,male,23.32,1,no,southeast,1711.0268 +47,female,45.32,1,no,southeast,8569.8618 +21,female,34.6,0,no,southwest,2020.177 +19,male,26.03,1,yes,northwest,16450.8947 +23,male,18.715,0,no,northwest,21595.38229 +54,male,31.6,0,no,southwest,9850.432 +37,female,17.29,2,no,northeast,6877.9801 +46,female,23.655,1,yes,northwest,21677.28345 +55,female,35.2,0,yes,southeast,44423.803 +30,female,27.93,0,no,northeast,4137.5227 +18,male,21.565,0,yes,northeast,13747.87235 +61,male,38.38,0,no,northwest,12950.0712 +54,female,23,3,no,southwest,12094.478 +22,male,37.07,2,yes,southeast,37484.4493 +45,female,30.495,1,yes,northwest,39725.51805 +22,male,28.88,0,no,northeast,2250.8352 +19,male,27.265,2,no,northwest,22493.65964 +35,female,28.025,0,yes,northwest,20234.85475 +18,male,23.085,0,no,northeast,1704.70015 +20,male,30.685,0,yes,northeast,33475.81715 +28,female,25.8,0,no,southwest,3161.454 +55,male,35.245,1,no,northeast,11394.06555 +43,female,24.7,2,yes,northwest,21880.82 +43,female,25.08,0,no,northeast,7325.0482 +22,male,52.58,1,yes,southeast,44501.3982 +25,female,22.515,1,no,northwest,3594.17085 +49,male,30.9,0,yes,southwest,39727.614 +44,female,36.955,1,no,northwest,8023.13545 +64,male,26.41,0,no,northeast,14394.5579 +49,male,29.83,1,no,northeast,9288.0267 +47,male,29.8,3,yes,southwest,25309.489 +27,female,21.47,0,no,northwest,3353.4703 +55,male,27.645,0,no,northwest,10594.50155 +48,female,28.9,0,no,southwest,8277.523 +45,female,31.79,0,no,southeast,17929.30337 +24,female,39.49,0,no,southeast,2480.9791 +32,male,33.82,1,no,northwest,4462.7218 +24,male,32.01,0,no,southeast,1981.5819 +57,male,27.94,1,no,southeast,11554.2236 +59,male,41.14,1,yes,southeast,48970.2476 +36,male,28.595,3,no,northwest,6548.19505 +29,female,25.6,4,no,southwest,5708.867 +42,female,25.3,1,no,southwest,7045.499 +48,male,37.29,2,no,southeast,8978.1851 +39,male,42.655,0,no,northeast,5757.41345 +63,male,21.66,1,no,northwest,14349.8544 +54,female,31.9,1,no,southeast,10928.849 +37,male,37.07,1,yes,southeast,39871.7043 +63,male,31.445,0,no,northeast,13974.45555 +21,male,31.255,0,no,northwest,1909.52745 +54,female,28.88,2,no,northeast,12096.6512 +60,female,18.335,0,no,northeast,13204.28565 +32,female,29.59,1,no,southeast,4562.8421 +47,female,32,1,no,southwest,8551.347 +21,male,26.03,0,no,northeast,2102.2647 +28,male,31.68,0,yes,southeast,34672.1472 +63,male,33.66,3,no,southeast,15161.5344 +18,male,21.78,2,no,southeast,11884.04858 +32,male,27.835,1,no,northwest,4454.40265 +38,male,19.95,1,no,northwest,5855.9025 +32,male,31.5,1,no,southwest,4076.497 +62,female,30.495,2,no,northwest,15019.76005 +39,female,18.3,5,yes,southwest,19023.26 +55,male,28.975,0,no,northeast,10796.35025 +57,male,31.54,0,no,northwest,11353.2276 +52,male,47.74,1,no,southeast,9748.9106 +56,male,22.1,0,no,southwest,10577.087 +47,male,36.19,0,yes,southeast,41676.0811 +55,female,29.83,0,no,northeast,11286.5387 +23,male,32.7,3,no,southwest,3591.48 +22,female,30.4,0,yes,northwest,33907.548 +50,female,33.7,4,no,southwest,11299.343 +18,female,31.35,4,no,northeast,4561.1885 +51,female,34.96,2,yes,northeast,44641.1974 +22,male,33.77,0,no,southeast,1674.6323 +52,female,30.875,0,no,northeast,23045.56616 +25,female,33.99,1,no,southeast,3227.1211 +33,female,19.095,2,yes,northeast,16776.30405 +53,male,28.6,3,no,southwest,11253.421 +29,male,38.94,1,no,southeast,3471.4096 +58,male,36.08,0,no,southeast,11363.2832 +37,male,29.8,0,no,southwest,20420.60465 +54,female,31.24,0,no,southeast,10338.9316 +49,female,29.925,0,no,northwest,8988.15875 +50,female,26.22,2,no,northwest,10493.9458 +26,male,30,1,no,southwest,2904.088 +45,male,20.35,3,no,southeast,8605.3615 +54,female,32.3,1,no,northeast,11512.405 +38,male,38.39,3,yes,southeast,41949.2441 +48,female,25.85,3,yes,southeast,24180.9335 +28,female,26.315,3,no,northwest,5312.16985 +23,male,24.51,0,no,northeast,2396.0959 +55,male,32.67,1,no,southeast,10807.4863 +41,male,29.64,5,no,northeast,9222.4026 +25,male,33.33,2,yes,southeast,36124.5737 +33,male,35.75,1,yes,southeast,38282.7495 +30,female,19.95,3,no,northwest,5693.4305 +23,female,31.4,0,yes,southwest,34166.273 +46,male,38.17,2,no,southeast,8347.1643 +53,female,36.86,3,yes,northwest,46661.4424 +27,female,32.395,1,no,northeast,18903.49141 +23,female,42.75,1,yes,northeast,40904.1995 +63,female,25.08,0,no,northwest,14254.6082 +55,male,29.9,0,no,southwest,10214.636 +35,female,35.86,2,no,southeast,5836.5204 +34,male,32.8,1,no,southwest,14358.36437 +19,female,18.6,0,no,southwest,1728.897 +39,female,23.87,5,no,southeast,8582.3023 +27,male,45.9,2,no,southwest,3693.428 +57,male,40.28,0,no,northeast,20709.02034 +52,female,18.335,0,no,northwest,9991.03765 +28,male,33.82,0,no,northwest,19673.33573 +50,female,28.12,3,no,northwest,11085.5868 +44,female,25,1,no,southwest,7623.518 +26,female,22.23,0,no,northwest,3176.2877 +33,male,30.25,0,no,southeast,3704.3545 +19,female,32.49,0,yes,northwest,36898.73308 +50,male,37.07,1,no,southeast,9048.0273 +41,female,32.6,3,no,southwest,7954.517 +52,female,24.86,0,no,southeast,27117.99378 +39,male,32.34,2,no,southeast,6338.0756 +50,male,32.3,2,no,southwest,9630.397 +52,male,32.775,3,no,northwest,11289.10925 +60,male,32.8,0,yes,southwest,52590.82939 +20,female,31.92,0,no,northwest,2261.5688 +55,male,21.5,1,no,southwest,10791.96 +42,male,34.1,0,no,southwest,5979.731 +18,female,30.305,0,no,northeast,2203.73595 +58,female,36.48,0,no,northwest,12235.8392 +43,female,32.56,3,yes,southeast,40941.2854 +35,female,35.815,1,no,northwest,5630.45785 +48,female,27.93,4,no,northwest,11015.1747 +36,female,22.135,3,no,northeast,7228.21565 +19,male,44.88,0,yes,southeast,39722.7462 +23,female,23.18,2,no,northwest,14426.07385 +20,female,30.59,0,no,northeast,2459.7201 +32,female,41.1,0,no,southwest,3989.841 +43,female,34.58,1,no,northwest,7727.2532 +34,male,42.13,2,no,southeast,5124.1887 +30,male,38.83,1,no,southeast,18963.17192 +18,female,28.215,0,no,northeast,2200.83085 +41,female,28.31,1,no,northwest,7153.5539 +35,female,26.125,0,no,northeast,5227.98875 +57,male,40.37,0,no,southeast,10982.5013 +29,female,24.6,2,no,southwest,4529.477 +32,male,35.2,2,no,southwest,4670.64 +37,female,34.105,1,no,northwest,6112.35295 +18,male,27.36,1,yes,northeast,17178.6824 +43,female,26.7,2,yes,southwest,22478.6 +56,female,41.91,0,no,southeast,11093.6229 +38,male,29.26,2,no,northwest,6457.8434 +29,male,32.11,2,no,northwest,4433.9159 +22,female,27.1,0,no,southwest,2154.361 +52,female,24.13,1,yes,northwest,23887.6627 +40,female,27.4,1,no,southwest,6496.886 +23,female,34.865,0,no,northeast,2899.48935 +31,male,29.81,0,yes,southeast,19350.3689 +42,female,41.325,1,no,northeast,7650.77375 +24,female,29.925,0,no,northwest,2850.68375 +25,female,30.3,0,no,southwest,2632.992 +48,female,27.36,1,no,northeast,9447.3824 +23,female,28.49,1,yes,southeast,18328.2381 +45,male,23.56,2,no,northeast,8603.8234 +20,male,35.625,3,yes,northwest,37465.34375 +62,female,32.68,0,no,northwest,13844.7972 +43,female,25.27,1,yes,northeast,21771.3423 +23,female,28,0,no,southwest,13126.67745 +31,female,32.775,2,no,northwest,5327.40025 +41,female,21.755,1,no,northeast,13725.47184 +58,female,32.395,1,no,northeast,13019.16105 +48,female,36.575,0,no,northwest,8671.19125 +31,female,21.755,0,no,northwest,4134.08245 +19,female,27.93,3,no,northwest,18838.70366 +19,female,30.02,0,yes,northwest,33307.5508 +41,male,33.55,0,no,southeast,5699.8375 +40,male,29.355,1,no,northwest,6393.60345 +31,female,25.8,2,no,southwest,4934.705 +37,male,24.32,2,no,northwest,6198.7518 +46,male,40.375,2,no,northwest,8733.22925 +22,male,32.11,0,no,northwest,2055.3249 +51,male,32.3,1,no,northeast,9964.06 +18,female,27.28,3,yes,southeast,18223.4512 +35,male,17.86,1,no,northwest,5116.5004 +59,female,34.8,2,no,southwest,36910.60803 +36,male,33.4,2,yes,southwest,38415.474 +37,female,25.555,1,yes,northeast,20296.86345 +59,male,37.1,1,no,southwest,12347.172 +36,male,30.875,1,no,northwest,5373.36425 +39,male,34.1,2,no,southeast,23563.01618 +18,male,21.47,0,no,northeast,1702.4553 +52,female,33.3,2,no,southwest,10806.839 +27,female,31.255,1,no,northwest,3956.07145 +18,male,39.14,0,no,northeast,12890.05765 +40,male,25.08,0,no,southeast,5415.6612 +29,male,37.29,2,no,southeast,4058.1161 +46,female,34.6,1,yes,southwest,41661.602 +38,female,30.21,3,no,northwest,7537.1639 +30,female,21.945,1,no,northeast,4718.20355 +40,male,24.97,2,no,southeast,6593.5083 +50,male,25.3,0,no,southeast,8442.667 +20,female,24.42,0,yes,southeast,26125.67477 +41,male,23.94,1,no,northeast,6858.4796 +33,female,39.82,1,no,southeast,4795.6568 +38,male,16.815,2,no,northeast,6640.54485 +42,male,37.18,2,no,southeast,7162.0122 +56,male,34.43,0,no,southeast,10594.2257 +58,male,30.305,0,no,northeast,11938.25595 +52,male,34.485,3,yes,northwest,60021.39897 +20,female,21.8,0,yes,southwest,20167.33603 +54,female,24.605,3,no,northwest,12479.70895 +58,male,23.3,0,no,southwest,11345.519 +45,female,27.83,2,no,southeast,8515.7587 +26,male,31.065,0,no,northwest,2699.56835 +63,female,21.66,0,no,northeast,14449.8544 +58,female,28.215,0,no,northwest,12224.35085 +37,male,22.705,3,no,northeast,6985.50695 +25,female,42.13,1,no,southeast,3238.4357 +52,male,41.8,2,yes,southeast,47269.854 +64,male,36.96,2,yes,southeast,49577.6624 +22,female,21.28,3,no,northwest,4296.2712 +28,female,33.11,0,no,southeast,3171.6149 +18,male,33.33,0,no,southeast,1135.9407 +28,male,24.3,5,no,southwest,5615.369 +45,female,25.7,3,no,southwest,9101.798 +33,male,29.4,4,no,southwest,6059.173 +18,female,39.82,0,no,southeast,1633.9618 +32,male,33.63,1,yes,northeast,37607.5277 +24,male,29.83,0,yes,northeast,18648.4217 +19,male,19.8,0,no,southwest,1241.565 +20,male,27.3,0,yes,southwest,16232.847 +40,female,29.3,4,no,southwest,15828.82173 +34,female,27.72,0,no,southeast,4415.1588 +42,female,37.9,0,no,southwest,6474.013 +51,female,36.385,3,no,northwest,11436.73815 +54,female,27.645,1,no,northwest,11305.93455 +55,male,37.715,3,no,northwest,30063.58055 +52,female,23.18,0,no,northeast,10197.7722 +32,female,20.52,0,no,northeast,4544.2348 +28,male,37.1,1,no,southwest,3277.161 +41,female,28.05,1,no,southeast,6770.1925 +43,female,29.9,1,no,southwest,7337.748 +49,female,33.345,2,no,northeast,10370.91255 +64,male,23.76,0,yes,southeast,26926.5144 +55,female,30.5,0,no,southwest,10704.47 +24,male,31.065,0,yes,northeast,34254.05335 +20,female,33.3,0,no,southwest,1880.487 +45,male,27.5,3,no,southwest,8615.3 +26,male,33.915,1,no,northwest,3292.52985 +25,female,34.485,0,no,northwest,3021.80915 +43,male,25.52,5,no,southeast,14478.33015 +35,male,27.61,1,no,southeast,4747.0529 +26,male,27.06,0,yes,southeast,17043.3414 +57,male,23.7,0,no,southwest,10959.33 +22,female,30.4,0,no,northeast,2741.948 +32,female,29.735,0,no,northwest,4357.04365 +39,male,29.925,1,yes,northeast,22462.04375 +25,female,26.79,2,no,northwest,4189.1131 +48,female,33.33,0,no,southeast,8283.6807 +47,female,27.645,2,yes,northwest,24535.69855 +18,female,21.66,0,yes,northeast,14283.4594 +18,male,30.03,1,no,southeast,1720.3537 +61,male,36.3,1,yes,southwest,47403.88 +47,female,24.32,0,no,northeast,8534.6718 +28,female,17.29,0,no,northeast,3732.6251 +36,female,25.9,1,no,southwest,5472.449 +20,male,39.4,2,yes,southwest,38344.566 +44,male,34.32,1,no,southeast,7147.4728 +38,female,19.95,2,no,northeast,7133.9025 +19,male,34.9,0,yes,southwest,34828.654 +21,male,23.21,0,no,southeast,1515.3449 +46,male,25.745,3,no,northwest,9301.89355 +58,male,25.175,0,no,northeast,11931.12525 +20,male,22,1,no,southwest,1964.78 +18,male,26.125,0,no,northeast,1708.92575 +28,female,26.51,2,no,southeast,4340.4409 +33,male,27.455,2,no,northwest,5261.46945 +19,female,25.745,1,no,northwest,2710.82855 +45,male,30.36,0,yes,southeast,62592.87309 +62,male,30.875,3,yes,northwest,46718.16325 +25,female,20.8,1,no,southwest,3208.787 +43,male,27.8,0,yes,southwest,37829.7242 +42,male,24.605,2,yes,northeast,21259.37795 +24,female,27.72,0,no,southeast,2464.6188 +29,female,21.85,0,yes,northeast,16115.3045 +32,male,28.12,4,yes,northwest,21472.4788 +25,female,30.2,0,yes,southwest,33900.653 +41,male,32.2,2,no,southwest,6875.961 +42,male,26.315,1,no,northwest,6940.90985 +33,female,26.695,0,no,northwest,4571.41305 +34,male,42.9,1,no,southwest,4536.259 +19,female,34.7,2,yes,southwest,36397.576 +30,female,23.655,3,yes,northwest,18765.87545 +18,male,28.31,1,no,northeast,11272.33139 +19,female,20.6,0,no,southwest,1731.677 +18,male,53.13,0,no,southeast,1163.4627 +35,male,39.71,4,no,northeast,19496.71917 +39,female,26.315,2,no,northwest,7201.70085 +31,male,31.065,3,no,northwest,5425.02335 +62,male,26.695,0,yes,northeast,28101.33305 +62,male,38.83,0,no,southeast,12981.3457 +42,female,40.37,2,yes,southeast,43896.3763 +31,male,25.935,1,no,northwest,4239.89265 +61,male,33.535,0,no,northeast,13143.33665 +42,female,32.87,0,no,northeast,7050.0213 +51,male,30.03,1,no,southeast,9377.9047 +23,female,24.225,2,no,northeast,22395.74424 +52,male,38.6,2,no,southwest,10325.206 +57,female,25.74,2,no,southeast,12629.1656 +23,female,33.4,0,no,southwest,10795.93733 +52,female,44.7,3,no,southwest,11411.685 +50,male,30.97,3,no,northwest,10600.5483 +18,female,31.92,0,no,northeast,2205.9808 +18,female,36.85,0,no,southeast,1629.8335 +21,female,25.8,0,no,southwest,2007.945 +61,female,29.07,0,yes,northwest,29141.3603 diff --git a/data/superheroes.csv b/data/superheroes.csv deleted file mode 100644 index 09174d9..0000000 --- a/data/superheroes.csv +++ /dev/null @@ -1 +0,0 @@ -name,alignment,gender,publisher Magneto,bad,male,Marvel Storm,good,female,Marvel Mystique,bad,female,Marvel Batman,good,male,DC Joker,bad,male,DC Catwoman,bad,female,DC Hellboy,good,male,Dark Horse Comics \ No newline at end of file diff --git a/data/test.state.rda b/data/test.state.rda index 113ad167111a0778482e46e07016fa1b455abdcf..f6e2ce70bb6efae649df2a23cbedcd5be66f1a28 100644 GIT binary patch delta 73109 zcmXuKcU+U#`~P2Sm9`3L>sz8SQs36{c0gLGhMCk-OO+~h00Kg^h^QzLG0fz?RjR3F zM5Pd|kSK^KD>B2#U=)G`2tx=n0RjXFAqm<0mwvvFU;at{IOlO+<8@v4InQ&_IJiEG z_Ynxo`1phW`)ph>Z7RPMnkV=KKNVzpUAnq_IZ5|zQRlfGQJM1ET|!g#md~GtO3NMM z%c>(ob2XPP&K2#2J^K7n=&*VlxcO}QPc8raQT5jL2k5hPFAsmc`}?(R+mOANfB*e{ z{D0RwfA$0K!-=2Wcbxig*Y7P~|CeQv!Wzvki3Om-H}2xa1=GtOCqq7i7a1$9M>zS)ztp((8jol3J1TgO{0Q3~^gHLg4k~9dovNrZkw3^FG6ze9E z5?3dm`~v8bR)Z*w8o>()!`xOUuuQ9@g4B36_3I%66;Q#<^GTK&a2~^V5F$iipwtp_ z-qNk&CB_MYY3Px5)J;Qfh(Mbjz?0JT3l1a!GeOjgAWx-8Bo5CN%MM9#bewR60h)6l zhsixVEo&&>57hDvhdzIcHu2KmeZ6S}R6X;?tk7}9Xcr22J5qfXz6{%FZVVALnA8;o zh)Tg9P*$R1Br7SBAqQ)|U-7d>Gw7r!4`zg@?%Xvy|ZsE}ziFk{Vl&TMP?*1tD5Z1wueqJp3f$mWk*4i1NkxXggGb zN$uTO4}J|Z0*OtkS^TRzFTgARuv{Pp%`LMOvXrI5WTL^~6xi!!*26czP_tfxdh&PM zJo!;OeEf6VpQP&sJBdIx`>QfwA$Ms)=tf=2o5_sv|~^JBb# zHIT5o)zM-RTg-6!S`ybZWy+sGGjtcyhDulK5E!NNrJ=?n27mJaOOG!xHp{Hr06VYL@14f z@~3cmm7-6PTISC>h`E&}DsTX~EcLPjs)C44OAvKHQ0BW~tm=eKPguU7Qr&ya;6Rho zQ{4TVvBKhTL>%i2BB;o9pibe;B?$BMJw#F*<28X0$&4rdE~dpzCJS{GhQ9DP6;5wR zh!N@1^oxCr(EeXxKI4tpKoMheB*id2R)GNTkLV{03ZQW)5VX8`kTTy(3HlyfG>az? ztHuNxhMp+oe`;)WIIp-z!|>CRgzp?Q-~6`c{pinhrlM0Z+WX%Xb5Q{ljWc&ZRE7!z z1T)pZa)bROQb1nOk&UcFscYVv3D7`3I_@unOc7EIoxPpUpqO(~mQG@L4xd_OX)6q8 zeN+mtfQMlw3g6lM&$$UJR3QYq>38|=cNBV?$jo3dzm~82%%nk2HpMG?!+ng{Kh8Vf z(-F!v{YRL+@fVM+vT*aAeHoF}0`qfCK{!`B37Cru#7X?Q4k%zAmr!{1EcxLHLz#K} z85~SLh)h1@Vi(tF(PoLz0-fhB@B?sFy$=zGd(xom)XDbtA=>Z>Z)8)xHFK}F&(}dp zHRdGYZeK$Y%%_3v181h1c1~)zT9r+d$^o~OzEP7nS>d3#1RGa@$$VWMLh5s|7*wpA z6H^s39x6Fme0@Yi`!E%spJBe2B89+p7~B&dU&C+34|Hj_ueHkb&p-@aX^chi_Y_Du zZQ(r375Y$ZdCC;9nf4XIlhvT;~-sWX`)P|sGR>mpb-`52F*18)2a35|9))l zWcX_?Y5NEi(<6|^2UPk%G}FaT%2;t7hUsM!)xT-j%_j9GDr;H3dK!d1;Jr0vIGD?5 z3uTvy^X?jsp=p&oaBFe3L*p_}QoVpl!cF(5T_-S?jXN7E)PD14jrMpJTKsm!qihhN zbog5kG*jLkQfBV#GnC@IzKbgp6dKN7&c_aTt3h2qX3UhMVnPgUb;_S1vFvNf^r60dx3iG2r#rI{HOfThWm z;eeegoW^u&j`Ne*<5Bg3QscKuV9ez49t`pc?uZ%FH?cV)&MYks7^kY7HpNV>T|3!) z?X{pZvHPqxO6Zu?oSI8Tw$7LLV-bDe)EhvZqp?0(FCfo&@~C~z~_x;=wix|Y1s5M_XK1W^+eP1JBHVLHnR^V(Fpb}`iZ!pD7u zvXMG?7%NC4>Nl7M5#qL_lfI3MnBn-5VwW{jzamJ*w%Re{wh42MWok|yvv;mACz&D`{S3_}~W@i=h++Tvc zTo=P`uoH<+G)7BaRGF+%9Y{edY2{>eBCGP4pn5I#V^**wS`@va<)~p3m>}=iDI9Ar zirNH1CA9zLW3vz+fx~7_cUI86(Z3=o{6_GU#!u3j?fo7Y6OGW zNf5~COR7f)*}0b4gh*JG_=ZJH#Lb11EOe0BErVSs3(2+kse&Z5BkTxu3KLDkMVzUm zmQtWjmLk1`lph&Hl<=6_Ca5YP)aub%S}22g&EQ`rAOPZVmUvtvu6KYI(EOtbwyhDj zB1W$BT+5P3b(;I*)bYw;5EG%5(jsbCj1?J}5e5L;O2@t%z%D(&E5IpdxgYs1x&@MODIn7$$aR&f#2Msf70mm@rq$}y-y#(KJFL=rA+kQZvb|7$ zD~N$m)6n|Z6%WqZM4@oADR?R=!)#wbG!5>GVn-wvKs#dgM^+??UqwybqV7c##;b@R!8FrouNFlV+Q-z<|Cpjp(*b6tD}M@jl57xG*vV?mvuinB0pp#x<# zT}^W{RjumK!`WAdp?GE-qi!YDH5Q(EkLG5Mz(xiSZ{due=FGBQ(^JoA_fG(!$(&US z_MPR30Ak8>0*CPj?J3bJ@u-?Jd$4}0X--s{8gStUPApsMNKDCq(CL4){m4^dv``{tD?NRcuAXsG@ zrGB}>Tvj<`t$2g0Av`#6a~(&MQE6#X_V-JR>Jj$$Smn&{I#VI5O3Ylv5A6U45-T)i z%Z>gO)R5s#Woz=nWLIyPYl9ybwsjJ$k`c)8eNf(RFw7J@|Ln*NZQNB41Q{+wnDXj2 z-JjmyjLhh6uaap3PW+#TLHhfh+r1;}!)pbfIdj?~u$KMa7|wFd3sFWJy4G6WH^xlk zde?5Awf;w}4M%FIVBeR81@moNopxXb1f@6Z=QFUa;no^4;1@Mu$Gf@ysnu>}`Z3MC zu6=diUdjVe;2X1RZeW=)jBdI5e#!E3IWuW@XVFydWy_hCD4*_JC?@IXjw&!hI9heeWD( zF&alK0v1riPi;D*_=p!#r^I|-?X%#fCnU^=C>i)6xUhx39cp}z&QV=^xwKA%gOOe{%PD0Wek#mSr3z)M{cq7Zi5+TAhIqj z;~$U1E~XX|c0FcclTWJyvNrPMCzLvEL85GrFq!<@xpBPjF%F?JFOZ!!_o)!IMS6#H zK-}up8mKf}tz|h%&bsj31uL64+jDy~LnmKNUT|hPn?`M}z`sI04g4CL|I&s5@eRrO z-gfsVf&PYC_$f0wJ15T8cintWxh)LL{a*s(IWI9dBtRjo9n3mMzzk-)vr6fkomw)0 zh1gu#K1nhrWxFiFk;7Qz`h+n{zcZD(2)>0~v3vvW(Y$b<57d8B&^-y(hq&bOmEy3q zJt}80N$sP+q}bm&47oXW^ZF@vRYakt2dz)KLVM|(bMtwObOXLIZV&8H4LAZj>>_c6 zEJB5^z(=ORxB&0n^S|}MgyV6xUI~%c0+SS90DUPJeYAgKf6?V7-dvVqene3@wX+vk zH^Rg%0W8B>ZT2Q+PdH~aX0q0X{O1=C zZ7PTW%jqKne~M(EE5r@pkNuC-zpY7z2HaF}t2xTkOPVuu0&>Acl0BD^`RrxHI!CRK z{GG?o%N_X$YXg(78DMTD{+u?p=DEDY{t6(i$4nPHervH|J|Jpp z$e5o%cEFhf+;Xb$Q0;o@Q3)acDC)neMwNemE|4S9-L^4jbHEKg9K&UZvDR;>Z)K@y zks`l$E@UF=PGG0gn9WE?&Yv_%*CHvg-Zc2y`$W;rocLE*M??GG3dlB>#cLfra<)Ea zz|G_~_lN1u(d$yx{W#yilzA=tms`K=^W6hEaN?@Yy&}3hW1*?kj&;|@uyC`5)9_jq z+5bpPx%m;Z)&xS6FP%dPf1TD;TqY&{I4*j&cV-{^!tG5yGIDT3Cyai_{mqR7$d!h3 zEp_CeX3jcTqIh(KX} zp~|Gqr>oYtL{l&ZsVDUU$z~$xN`$24-&US z8y%&f0>_CzvN)J9vPXDME&V!|sZ0xthj+hp(YbM}S|F+9OhC;&^9uG<{%0gThNQo=}@`W+|P+>Z{lQg(${)vu&UB->LXjlr{yV;qr z=*j;ek1?K^W64o6;{olDpdxDek@~nE-092uQr4TWM;7RN4X{m4;Xeef531(>r^w$7 z^x`%v#%f0t^s$@as#?E6WLHCqe&&t;DWG_&&G<}u<^c6ssdwKuZ<6PbRZiQq(YQwk zL?~4}SMc{4{Wiq>ZWTXeS8{1Y_f9F{Hc8&`SHhC!FiR3R>}0dqYf$hJv6cuPu%xSg zLHW!-68arY>VK-fqK~TZ_&~W{6n?Uebj4DF@6RA?jLZuk@`_uFB12Q0*PmE(H^5ay z?tD;S+5vf&uGgp1hs#NL@mEL+Iajx1JMB4HWV@ZzOTUvDuIx+tQ1BkCO`1F&EjH%I z7r1;DP1d-hwzK2UZTH$v8vwcHJ;|?sVbvtLm8350`G5+I`OsN;8$JCDIMtcuPWguG zg70(EUZQ{EEh>{cG8Y`LC!AV(moTb)Hlt8(x#{c<*{#BkA6#OM5ucvXUg2JHJ~h6p zkM~DvHpOr&;nc)@<2nWD<{`!O?IACJu{`~l_{|CBkIl+hM%-S7BN4>sihP$scAEk_ z6qyN1<7c@k&JWl2s)9NX9-!=*&lE01T&Kj--$NUz2VkA*w%WWUcKsY4P6>%#C@KaY zsnftJ3nTvkmVEpg|dEyCp8>*exMd=^i z_cuIum(Y8t0lF!$Cty?4FT`%n5P=qGI3$8|H-yRA%D_WGUear)miiR+%3aJIk^`)6 zaaof|l1$e5r^HdrXW^{f<1zdowITJdHSbzP1?hp*}AV<0X*{FT95jb(8kZMKi8)hxU^5rPbyUU2NyB zaPvu`^?hUP$+)&Or4$UF=*GSIYyEcUYVYak=oI_pi_GY3(oHW#@HNsp@YK?AMy@9H zu^IG9(jM~(^jXXIRGb@x_h|wByQhf$KVdOI@Hp!Y(Gk8`n;j+3kN+@oVXMaIGK@&K zs;wK__(gQ*F2$sW>CxPf528!Uo4+C<8C>SCcJkKvr^l&{+%S!MK6C^APDtm>0pKsq zt~JLl(Z->1vg(9kx1=mH;3c`+loJm&=9#TQ=E#u}gEe3${z_>?T0)kvPv4v0L7)9q zLlDlSomE1#OT>%FTMG_;Bvk=lq`%}GwjjKezgvUp+oS)6AQG4_$?mM} zns@O-V2}24H`|BRlkoPv!lXleF2Tb*ov?bc9OXM?s8C-Pw zYEMm{B2Gm7(O2Q~9Nedf88XMs6V&Pl-F)54@leZ;taBnCC<1ok>Qm7ZS+w5P7j@tm z8=IcpL#lTw)Pxix`QTO9t zZDn!3jU0!iAais@PifP1`Ey!{P0)f4AWsxCp305C2jCoirF$;rPsrzwI=Ps>8v6E) z@M{$ML1IcIIZ+;+6Jr1CI?tTf_E#Ma>YFnYQ!0m=c;dA3(irE21=?KWU&76$XmXA# z)c4aOryK5QS8gmNJLeYkn{~lC#n30~*5@F%!9KITAXWJBs_lXA6gnR?V>0LZw(NDB z8soNxb?ZWM>UMl(9X-C|@VdGjM~9v3I5|iM?{%AVQXPK$ure{H#o>>23J$)xRpOhUe96a6 z!tIGla7JfRMA&ypO0M>2xbu(RxmN;dOz+3?VI?h}Fcd_0U(J`x=%j}?@=4Dh>#pk@ z-VjnnZ@!INK&Xueb9Dt}K7<>S=fjpbhQK|byK}B#FoknC29Ew(7MSKee`R^V2iEHm zM<&&;J_!>@FFJWV)?4q%+$tHg`z7V6{-A>W z1hs&Yyu(@hWMym{*F!bmvP(mpznYn&>t5nvN`J8&RNc_SQb12hdtSlAH8<|PHTv(s zl|ZHO<%)U0iq+TmJa|wr1Ob#L6C0v$q zboKawVU2F;PHkYS`NaEhxr}VtV6OQTA*_8W;x|G50M33{4;Ha$_j_rHQjrwTcHhp4^un%eLoOHXp>LdQjZbho^u5Km^u zOupB!zl-a{4#vGj2D5xZINCFvOKEb4;UQ23ubcqq1%lKXZ;+I&0lA-g0ZMGzRhhDQ_xn7`x37t}#dOw4B+x|4m}wX`%)2eI=Sr#30f2%b+n@cPUi+FDn5~;v28B zs)W?NA<%n>-?^o-y!n!7(F;|05L`k+8eT78tQ2B?^enD(B%F1Ghkb3SzEN!|lxoso zQksv0-gPhS{&+0a zPgw<_fY^%jRNt#(hY6kNASQ%?4yuG?)wt;n+FOn+g_0&Cf{2v?lsZ{x9>}(W9!io6y9;mXGSYn z5LSw5Zpd>=(^=g8>B=-zri2Fmj~?87WX4S&PNJg|eLJ&j1p4y>fOuAbefM;yHp3h| z>=!j-=gZYZ&D1XYCA%7cYpf$nme+GV)#C3G^MjkC1w)yZA))bPv zo-+;=??@U*gylv$=qrwe)Q8)f`!Nw>)bG4%{qqe;5#ph{tg99fj^2A>wg%*|NAw=w>Bc^P*rwG<*Bq=KWy# zCSowiP+1du{iIKr1UgTPo;O<&tr{H^C!qo3aNNjl!oLE8{tI@4*bd9Ia`TkbRJDH+ ztC(+6$x5}A0gwg75tZVsN0fm!?K&P8fvaA|M5ud9)!l{S>dN>LRk*#NO7ZqJ-AZh% z=%^B3?bdv8EG5j|+@vxUnn3m}?K10#Jhl#x>oiSu2YI#d!f4*);ST4jfR6!%C_oykbILagkN(k(u|b zoW2Z2=yaF>L-9>+CK_5%z3k=I4EV{Q^U|FjRy6h>Y7hvkGotgTgz55Fid9GZ0rBIg zD7HgJV62sRrc5aqiw#i}Vn>V>UF(yFRgr%M5~ktfU??*zD9~=EYQ!uU~)zu z4|rFET@pp}z>oQ*5?%+?O0)FgL2j-bm$GcuYv<%MDjahKu)19eT(zQdqO}6TR4+t+ zlDq=Zi$u;K@2X!KoBlsip36gra)InrVzFIJenPV&9RpKQf~YcDK3o z+!WRHZT(cC;qsU+6wJ+zp0R5USJPIsWqpFe8{yKBTz5ao$U!*AN}?;XBs8=kC8!Zu z&qT|h!!~8hWmPhD0N>VRKTmlf51t=-ArF~iXS7A+VyrZ5g1G?`_x;L>o{(Cp>)%|{{hAdpxokNDOBGh9-eN7Jd`z@AV&B!+ z8-p!XCM&d`0IZ#i9r{c7()A^yONE>9r*? zQ{hr*E`D@l3-=$FWdOM11*iNyB0}psOxk(+T?<%fJa43A>ZvGt1Qn*}#MMvJ^lXpg z#xRA}1^717HMug@{7jaEDeS{(Mn3l`WC(0fwpoI9gXSkSX1Z>LN`sR#^)0D~W)^&6 z0rRXuW3j}7z8aFKxDH+fZbG9V^pM=Lme?#_tYBKP(6))i> zE^c}1(ao#T;M)#?AK-iQzVdP4cPachU$DVJMghtnk6 zWBlevwXkGURj1+YF7|BAA~hzkm@)XrkP@7}I2n-)k^9A>Y5_(vpe1>p*g~uVT63~A ze^r?B&8t6KiV;9pT@~wnT9mE{8WTIZ<&FQ}$+Zh`Em%(RQikuK&}B4Ct?22JOa(FEFW+Y3T-T%DF<2-9`-m zu5TbG79v&OcGfOyt};Gh)kVhJ)x3obCSxr7O`0lmRQJ1D%MRmc8^;tT#P1omT_OCF zfey5MHxe_&swHmYs_bEQi_eOM1K&~@8e7yW9ni(R+C>|oiyD7}M7DDinq%x8xHo|@ z#qbk$t9FY5^$it39*TSfCcj179h6*l>CA++XnyYUV_- zPk17wxZsgt=j<1o+IzLr-{VSLEMf8o@7;H4I;!=TPc|&@{IW#bH9NNR7F)MFpu6yn zxS{u&DDJ(VmPJQ|S9=p}=_cg-&t%$5M$P$iZw~ScMSc-#Sbzm=NrkAbi>VSDeU?v1 zl3^qzy8Brkp6@~1?ueM}KaTgkX!A9tR@w8tIpj2Qe*477|32hJ>-NBri#BVw_%;JA zX7NCRc}A<$-!nQnLALD++}O9Pi{x~-W)TDa9GT@*QcMXGbrlIy1D2^(a(U*yy0zu$5MaOvExi5KiqD!SBqg4x7>yFS(Q)*(!E+}3yScapv? zn)V9azh*hjqODx(Ez@29%H&Hwz#Q(@Y?B2fOp+;HHyPHQ#>&nilM8H|?uqu*f&WRi z>%8Y+^iewG(}K;vj3h*clB(32pPT>34)m^pa>xJhQu++s_8!ds#V1U4iFHS@bcwYN zz;tK)LA;d4OAur+;D23?BY5-3+%5h+Nkh84ZnD005+D>q)4je*l)(zL9hpF>WP3JpY z{~ZIsF{c{dw3hTXxGH1Je!EbW2P-Lv*|`eAbm}^ysqV7*pNEvX%OKrLBu|2waUYu( z@uP2Zo|!@|{fa2Xx-_8cY-64wWd&bt4<1}SnN|OcpcdVBj+^Z;C}U1V{uD{2Kt|s& zt@bAb=fNY)Uple#y z1sZMb@6?-)cm()X;4hr|BSh=FRyd4OUf&XzXWQ&?!Q+BCwQYL%H_)+L*1a;cb%CO?e9r`|rx+NF$wx?W(*uMNo4ouO)w{?lIE% zDHHwXqaHIM^^2EhZSl6v&&Mz?eUam=tN-Nu#Hnb9fJiMPwv76gRtQTdwd72+aZjU9tavFF% zamPink=q_-aFIK#QTC)bYwgx7KQ~|d2EKnjvTOL7NdH*Q<2Q5_+@I?Iv)!(b`(lH9 z`xV;$71&%VaZ0cq+~F;7ZGM4Wt-I`eV__4RHEgqM{?bt836^csPe4eCjr3`l9`A=a zXbLcP-#1@f@U30Bf1iA%1CeSXFxLqryAfLNh_o&P9# zo~sz>Dp>;JHO~1jL`9NA;}Kv1QfWHR$}>?EUelUGJeT<|1pZg2N{oXo9#Inh9b;dW zX`|`rN@i9v@+F~D55K}TR_Spom|>s4cQPhcc+cGxp{Z-}Kcnn2DMq1uhhW`e$Fuv& z9gxX8)Ojmf^AP>f(rco-g)d@iQLW3)6+uj5Qdg;BNFF~EsJjm&5 zP~fP~Ms*Av*{^pV?Mfh#Cm%?6ACmu^8fG52D|#Fy^i5a3A%3|}@cQGwRNSS8uPoRraTKNXiuSMvL)jZU9r--&=V6XHiyXhrSlVISl zw5NpaV!p9b0M5KFK?(jWDrP~|k0$EW9bG=}_=fv}9BH_O&{qv%p zqbV-d6ZrYOf+?-x^WKD!s+-uw{01yM3s@oS^c?sbuEicUxhsJc%~v&iA>sB=4a8=} z>}>4R;HI)g5F5kuh=3Dz^PlW*raorvz~d$;_5MS`S<3*HhEtcfs1xu^}OZm zeTbRZFaTad_B=f2)D^O$rzmdDN$-oB&^w>cu$Pk+7Ac1 zrjqEG(Y5f@n|tPsg$BpwxJ6{J_8^14VolqQn8g|0Tss9}D5118bs7$P$ngcZRXzAU z{cTeAX!V4>(aj%@a^=2pPz)QqZD-iF-K0mr88O1kd7~5eJHE&(hg%>GHxIOUE_?=5 zpvR%d^#_R53o#ld*Zm>}B0K56I`}wg57a>hH5=^qfHq7hLhqQXyNaV$j=_M~Da{3- ze^<(?*F*RKozh>;zM@eoXF%B^>JTydsP{Wnm3(R|_c(!>FkUm^VC7-fo~k~~dR0dZ zH|smwDF(bB{Lp-h^=8aVmcYmi>Z}XN)MTkbY$QX`Iw!A(>EqFqg)RroxluOfO{;LRD zU}LNAz56hMm;#L5_8k+$Kp6E6kFZu3roTCjyILFJc?zah;wDAgd?0-Zt$BE;o}NVg zM#ZPRmYN(rKSk{}FD3223ay=s3RtZ-wmky=85GRK$&c7)@G_%fjfK+)`24HOnFiZoXD1*cd`RAjGb$o zb?9LM8;?ZpHEPl(*~4($xs?fQZ(v)>xkYcSZzPM@oZlmG$s(r0{?I$mbDXhyz? zXQc~TF$JvkNIpeS5*ToxO_d~7?%Vfl#5n*9aYe1$`WQNOtO{!s9bJFMxZLD2Mx;rv#K50T;rH}Yp$EwVB zvr3o*6OpRTVIpB6Y0+cS!$25Fd9MR?4R{-+5a2Gx55&TFx^N{e&MREr9XO6d##wcy z!HYFVi(-Za!orvlRoZ*8;V3D<`gEO>?5N49hb@#FUQ44LjdlRU;M$F*eAm1%ty$8# za%jXdBmO-wC-j0C!*um9+d~FxGI%pNdhaKiVSu94StkaIX-lHpdY^(s7)W!|dM~JC-D+B1)8naQQ!}*-cNZYWlKYxw zKrl?blNIQ|u=zKOQlTa7jM~hOKmw;!Lg8I@$$Zi`0?Mj@eccq&p@}ci{A*>B%6d0noz4pStx5QPAdcXSr;v z8Dli!`TYMoaY&?I1AkrOuPn?vG%MEXvQl&-X{CXp`La~duu7+o4XZI=-$yZ+Nd6Z_ z?^N^OP*u{sk`+aPC@~^p+oGm`;xe-0++h(WMTd%he=5DR`jFgmM0x z1b<@^r%sn1d^ zuVgXgvn~q+EU0_a3F4baTE#AV!BT+sUTS~icN>MObQvD&Got!B`C~3+Q5UeR$>R(9 z)3hrt5%?3Ptn>!$w2ZH{NgolgjTNU9OC~n*0_*^FB^`RujFoN4cSyC|?_{VV zJ2Xe?2%(r5-N<+S7=(lEQVm4J4o-h&wObbiif$?i;k4S9ty zQM-i+{}6qH)+(*kJ5|aep^?;5Cu1M7n*JHH{Mo`7&a6%>hUk=eGTc!tsJ$D1n%^F? zl9BYDtir_x%Z*F-r^TkSiQLGcUCAq_IqyO%c7e&jY10fs3Bgq}PRf6Sy@+{=7}=1r z0aZwO8(WFtB_`QzvbZgtMvcJqkz1WdY^0@Ah8_OWioo}Fc&r2cN{ME1=bV?mLw#3P zRZt}AK`B0nz$hZIS}+s)>Z8E95vSpSO_(2bd3<+P%Mq!0|FrpxWgDuI69NILTys~@iVT)Y{)4cGsp{!8D=Dn|)-p{pDo zq86+a3tLq0hdcm`!(=w%-+?Hne&R^@4rn8hxgMix?>C&;(XLRR_Xlq28|6v@$n2a)H|HRz{MHDw;PTlmHa*UGG8e&M`=o-0#F zap7-qlpwEO_})ho{l~r4?fcSlohOJ9#Wu+AVWZN|&#gFU4Z$Hx_mOiBxD5IcR+^? zhgQD%o%=}8gIa?kX^s=GC8LmXo3)uLraE3JCY@7~Qxje@(C8^Ra)8bk<0R9vqdxFruPs|yw;&*M(e&j9W3i3&#RM}3k z`orW8(WWPuk&KiourhJ+!b|1RMsXSxu(fk8R-1HB$&LiX~m-eI{ zOTlfCiE18wWR3PZbDqIrtJ|7way^A6PM9mxWa*1>DVsd3SEydDW$QmjoM(VCloNcc z?A8_Z6JT!hjpxFqV@faaM=Z;^8w{z6tYRbExko59+*58BC@ttNCpMuaP&$T^c?+Y^ ztkL24IO&Ky*-mga5WCe*zj&lB?Id<0Jn2Y@zBuAT!AsV>IyErg&a=a7ls{lSx&H(; zl8a9V{-Gp`-Y$+PCKP%wT}A1mpeez)8BnKMfMk5}kwDa!aEY6AHIDtB?qoR_$@yYDVBVl(Tl^bW?e>{bzC2An(F?LU#R*9lWXIi}rWxQ%VA zd~uQPLp^T>`KOi?d490J@=oXbpLdy|v=c^y=(NeLK5W+Nr`)6WxD8#tdT)N2eANFP z_mw}^xNm`H_!}7dlr8S|SeB*?8J_jmRV1bofgjBOr9RqM@4Z0~?>WHnX{G)H+hDoF zcqyk-llGZbVitc7+(uFrzNDCLwWbFSu(M%(d(B|izGG^4V;8U#KZ^9AE^bNc7bOA4|^+?=v$kUKHTZPQdl(Y|LNN9t2>avf`rAssn zFXY-xw(K`c5$0OpvZvt*wx{6=8C6Jq5NOEXFHa5>Zh{pgJhiNl(uvbmaY)z}Mr;rP2?!cfmKzg69F55f}(aX2#jdP7upNZYP;-b zi@x#u*%gPZ_bS`DACVGvY1gs7;_k+s@Nd52L`;6bjdrQ?1wH_ZMW(5gca3`S7^|#U zk~otN`-9QVtVgc__&9^%k`p%`JU;y~tk3CDLVc8A$fL9dkhvH>P5Z#JGxaU}f!L6L zT*kL2mm6$Ve$q?i^|xN3H~FqmoN`AQE%&IaAG@vfr2J>^5C8;71_J(hG|JX)7=6b_ zq}qW~-J+x*UYhn!%3-%Q>Vo&oJ)awsS7_NhZ^6?b{r-~oe37w#XL3FWKZ*$_kAc6U zv^l1YFyp4HqJ*AMCsvH~&1!=wtxz=eAv;+)dyR0Ax%`HL%dXIr*O=ZPZ~gq7(gpXM z!O81Ks9yJqUn7Xygi&M3=w#N^aGI~BaeO}2F!_f(Nt~ekMD(P*i2LYAl46JTrrUi1 zHm0cU1!Las)&b@*HCP~2E)(!<9nACuLJ^kv8aAcb+j9ky&JvO)QtgoRkOFOm@M79lGWVd;xp}j9t1;nc?QIg-o4hYIAM-LXUr7H_ zyV&7W=SMW;{}R0nVOxe_zz?u6%mZiTCt5G(uk|?QZaU~HP&yj=m8IF_x0AQyvZNjq z{Z7Qged>h7BF3?mz{T^5qM-LOR{^T*>*QcUiGt(Ki=&``{=6c!ZzS)*H zPKMoF%nJeFB#lww$?ghg?~grO={L<{x=rWlB^;ssu1iCG`$0FupzdO6P2gFQxW+46 zcRd>vtWWbE_YAyv8ap6t=y;jk4jjR}6+DMoUO_>@R%A_>KkNW3&t-2x$Y;VQ6qkD^ zgr5lB0$u0@1UKR$+s8xnK0$p)S6L?MPe|!o)~3sTD{vCsV;*mXI<5f5^|KzbER}G| zD~=5Agbh$>g0frfCEA2VRVL}YKfOH-R7D|Q2t>Q4Ju7ZiBfHRZn{mX+gmaf(nOi0b zNaZ$$nWj#*`2%oq)^V%XLk&i-HS#V=bn$6SYm*o21lI`~1g`udV$tDVc4d``UEvek z+tN+bJ_F6Uz-;_zlrIW6HIqsST-Kr}i0@$O6t4dUu9~@cfbuD^r|7WrB@mpjE!{%; zKKp{jqwjw{V>U=yevnr_t5_sM2`|uQVv?Oo3jJ2EcD#56ZUpG7RVOfS%lwITYj5z(pHMURSR3&REX_hRnK)|x z&$)$k-I`~A+;yT8feHSU{nGI_{B4+C+UnWyN?&HS*#WV9n9|~D3eRi~4>0~f+cHI4 zEuH%5x>T{ZbyxNU`UXPEF7#*SD5reFKA-En*Cx&Y8Mkxp!9uUWS@%0|2aaPFdWk71 zssF62K>UtU{J~FW^(W;Cnyr6#oBgla;UF@;^gX4|GWA+G0kgWFEDdQo#ithyigw)< z;lC-<)*u(xuWai>@HfJ9v(c}OccwjIe!@Zk!&={Hj&yA2sNMYo%%qbO1~aCH;Q zF+hLXto=&h#G9J1ama_3P>JU5v^W2?X7Myzr!x0mbHR;WC>kn%$lGhtrMX)xF(_*lphoWE*j}Nbhv9TZVZay^kuVZKY*(e(Jc(e_rB(|+jfz9RNmi?2lewB&xlo%~MccJ!L@wXgcFl=k|^ zI4?-3WJRz(sR$VZjG-sfZ;-S3?TG1hPU@WJ;lj5RN7R3C)|L{@U_{7oAwSlB%Ac@` zIRxZumWfk;Sg&wWpS7X2TK?RN#gaiYeX+*$N;Dd==&eQ=oSVNuwnavR-_sQTLF{#= z6IMk*Oa-6*54Q?dVn(uqmT=#wa-7U9(o|Mkd!S19*Yrj5ABxm%NvFhl@WX)%>%C7X z;_!AbZ~j|PxV&VDs!X9yx09X*rt`rb9CXbolN;xRm_N+VQQ`x$L?*b$N=Eq5pCyVr z+t9Ly4${{w#prNfV#iF%1K13%MdtyTjZ2jp|6Mvf30WADpUq02#O5EB__EqKqK49v z$d11FNcjr_O5>S6J?bpk8(CjA43~CzLL#^Y&@y$;J{|R+H$C98euzpCodO@$>Ysg^!VS30ijZgcytaw|v5r991zEZStKVbXmef4UNoAUt zGAo1MP9v0PSo{fR&+p)1W&AbN%BRjZ60M8ATqDiCU^Mzrja zoug15>LAooL<%G-A~K^zmSlibqD47ul#v7j99B39A$z^&`3Lg(5H+!Z1Y2t)IRNH0sndO2$ISv?3 zlbSv#!{xfTj_uoyVy=mK)7R9j!KpL*dFhPF-#OCAs!U|(fNs8st?n*l^Bg)jF0|%Xjk8$B{)Ei|Ruv7T=xXepfev~SR_Y-g$ zC8`Vn4+`a_^sOO_UeaANSc}dRI~xe)IM&N|RLgDC6oCojIk{uZQgFOzBow@wmdq}K z9^cSqb*TX+s_=!sc$<9@<3Cea^-G4R&N{nkW{4J=eA`9&nm+i#ZKWLE>zD-O9@a;p zs?e#f_|4RR%?8}P(GEhAk5Klp`1J@qg8?0Og9&ug>$a`v8L{s4m!2_JFSfFy zzN2S%{aKo?r>j(b3Yhv}VXfPXz0lBl){M>%ue-&@>*}sSNy_0qn8K6!fa7WZrupbMGqWs?=v5nKu9)j@(QweH`*r0#ng8@JnbE@CmGpr`em+#*4PcGF~j+3 zcW>E)%65y;5EFiaT|V>0hH@)Ia%*G34B~kzUvm zz-m-KJnCz;PqFJc*me@M90z;i+2D zuKU(EFWIq6Lz%LLv~_}@dLOn%@lBmc=xB*JZ{12=W3^t96_9^yJEZuX_aZ~Rb9Z_* zRy&^7&OK$WBVDOXc}xB${C2FkLp$$h^~zSh;BQ#CF1Y4mdfx!#Vy9vGFN0PsG}I#% zZ*dojzNpgwE$VCNA}E<5A>gF%Vt~FYWlN)2s1ziPIypmoaiU@U8v;`3_ngpHsPozh zibgNgqKJ~u(UE^T--u0pu6yC@Nn{fq;uoMWSm8bAZ!)@dbjJQm?|A`n6+v0<@hfHOJJO++tRUit>cuot-*ZO0 zXf{FG`B!AXBKYthYl?g6XlD_7SG@Vv;Td9>M6A+n8)8#0+x*1J)`qT5lv20rC|Zj( zoVj(vQyO|zI@V1d)(hav?-49!tS{DshXWvVfFI!}sZrS0r83t9kBhChWl=a`4fM># zHcWj(OSI{jldEvs!IZK1iZN*&B?LT*O5N;lZ8|O`_qMR*)o7DMX)mS@(UvHG&T4er zU(qZ93_e_($Fua50)6{x3zgfd*d#9lGQV{BpZ_$^iH@A7K zZ!%)PMVR-O9dRsKNkYe2+Z8wv22U)6_dT~9hkP8pd*T`a_t{k)-SF&3(14^FUjx;m zQ`@zbT^d$+ya0HpeG#bl&=E#kt(^S%7h3@C`6xY<*66|d&8*XDR@cMZ+^f?!=cWny zvOpnfJibD#z5~5cTZ!EHS?cmb6}`;iVPsL4N(+$_wM+W1|EaDKoydOwg6CO*0} zrE^yW`k=b>RV!ptM1UxQVrYAsB{zM!-CItPajB1HcbN*?!v&-yw`*Z?ipZ(nGAbCA zKn5BN|Ky0H{o!{{6wU**#nL(YZx>5JuesQFc`qZ_%b3)&AW*+I z{Fa)UYac5wk={A6;uk`&^h-2?M9nU*Ntj%n*cPGemA*iWr;qX!&DcDib~cJ@S{)+y zW2HRoziL(C2K`bJrwq?f9o%H=ZDSyKNdJR-!l3R&hvO(yPZPBji_3f z7}@Ho#ikIuRAeVq4R`iLV6SvCGTwA1S$ii&pS0bbJ zFNsNlm&dzG%L(`~6)l)ZS)gxj0xY zOW5=yVOLTqP}NV1Rxn~upObj3=xSFdam7{X#J`M_`TnTyl79ezT;MB3S>>Il7JFqR zo!20{=UbZF;zoH`W+P^e8ca74hA7(6Hcs8?X%U=MhU2ARZ`xFzA`UBd|2X&sOXoka z6FcJ9(-ux2^Qe{=>0z&jPdIk?MiSaj7*LmP7$=8K{z!--R>fG$K3*38l7y~S(w9GI z8QUIG0c#$Xsevz6N-;kIUV;9@pjy0cW+?)niGlp1@}F_H6=98{DqShzbW%J9(x{`8mjgdG#3;-- zJk3+RR)La!V3qyv1jR?osgekz^^P$r$uSrNBwNPKf%|aKR-*DM=rP1$UTCd?nnd;} zRyylI`V|q!rY=$c!MO3tC7lsU@gv$}1SIQz?=C4E=4RT6&t@+9$zuw0Jq7J4=4ic< z^Q=i3UZzo!`wrk1+I8u#2+wx3ZKTd%{wC)%&(HWyE|^gQP}Dt1XCZ&7a62G2B=IpeB|+1S302%|;OG1c-hOX_aMBOlt%-FqKm38&d$Anv zH~1f2C&dAGn;EvF;A!$Q$y|0~GRYL8urR}hT0Q;(NNX)0G29uvNQD~S@%!(xQ3(J+tOoJ|e7HWC+q+c$IyO)V0 z*`fO2G=Jp2&+z)h??u84X!{;BT^H#0BX7iLBGyQvP_wP_nE711I`zrnr4AjH zo#*Bls}~{^nhc4);LICzb9}Cpr?^?tLkPu7%OzW_&p_&bpA{HpO1o6&Wv-iXs&VO2 zzy&kBO{kRa%U+6q?jtJtMfARLs7GfR^s)timTCulr1nY}ajF;D8VKBGs~1P@962M+ zStbufew=G2Z#}?K|FVr2ZmB=sH%a;JI6(L+Lwx-RR}q8N3H~!5Q_-no4@p%IE^wuy z40Cw$V$gbTm@GiH_z@rFF7G@Y8$hG~D*C7Gu}m2~fZw7S&F?dQ%P$Bjln$&&cW&YcrAGnjDrTcl6Lp^bVs?>1BiYxsFRV!WSZ7G%lUq|-=L0@Os%8vKF zq<)e5XU0LGdPSEXY2@U0O>;^V8yeMQ%Mk*|&2rYL$qpWkWunS2>yll`5pGC2?2UV5 zpj7w0iJQ=K0)Rtz8~b%fD>bb)R$*5sI*qeV?<7>05A|4Q&h}NN_={J_3kTRDs7mD) zl0z)iatC_=Y2?zytE^1(Co+B8+Gn8D< zb=k8WA|K0VrV@l(EF%f4;hW8izWV;mEefq86V)Tg@kq@wXmtG%0YuU1IWSoXxJ?9s)97&n#To!T^AxqZYn(Wk7v{uE#xlHc9rViTK;>lzZ?fY!IB5>gHF6Xpqb~ zW~p%uj>IDhhX4xNo!Xs}h;3%r_e=(Gz@&(f)-Fb1qDR0aX-tqMr|it=IAN1Y2O?Q)39 zu(_79NP76V$7glkVCk<@hGorQJA((#yJ1iS0Ht zZ#&G%E|Me-EIm?&T5?sKmXFeVms(Hv9*dFVMEksXPC{ESn`8T40Xzv+1)G1zOM!4( zQDQaPg0!<(Am>Q$zk4mcO7}8SaZ(=4tNA(RanWrt6e+#p)fmTBGC}ALLC&W%vr%rZ zb}2Hyv_~+6CacSXx1Ac?<~F%X^oTXSYYMB~rC_j7|bs4{2^eK zQ^C0(K6fcm_nT`{CS9iX%HMObUcuQWhE6}%RTMn@Az(FsPr=j=2R%xQW_`Q2Aa8Fn;F3KBpT%LsPTmBR?f?8n^QB2>wT#kImP4&M+C^ZW=cpu_(Az zqUk%caj_I(4s_jjp&%m)4FH;$4g!7gkbW~|Thdw1+sbxv((d|~e7>Ib91(?kb48A# zkEMOKUi;`_dDjH>7$Njm#pNI#N6CzOU5Ys*u z$qZYl^-aFoFiPxC(|@7aWO92txn~R<(+E@}X~U2`0;ax50^(6gA)aL~whb4k{T9C- ztAp3aVm;tb6eTODz2YG$jnu}D6MbhX&Rx;9J5aNuyLe6Rr`lWwds4sNZT?5Ujr^Fw z8PqOzy5-3&juSE`z9L{rqq`J1^;FX))APU1Fu!L~$SN{lq4mk^v!e57CciEM4?ew? zFQ2|h5-EUWg#$h+IC#Ego9z*rXVe{SHjqx49;06Ikh*xdI3uXuKo5F0ka7q)jsxep zT6_89#8(Xv{D4!FXs8WP4G#uMM%px33&XkmsXVf+5ug61KC}$uGd4Y+kJZ}EzNwK% zaa=h?{_qWP8kF--TK=9EA<&to98Oz#DhIaSE3lC8;R>2+b7M31Y0OwQ*YeFQBP98V z1618qX)k3ogo<;(UxL=-)bIQn5PyI^=S|wHwh?BS>XA+4>+KJy&Fhl1J5}32yA=d6 z-aimr-z>j#uT!NthE%#|uLu>6V(T_I#|8Q)5nrR^W^+2XCcV4<8SkxlF$h@1&Wx}Y zGoN=uUwblx+d?O!oRP0&jeOpJ;V@$tnE(5Zrh)%xTt(NJFZplS5oH+}=1;r2)41rM zc+&$Xzxn*})f`1wUXtk8%C3AFel*;6ciwxQml{gzikEF*&7<%ER_3>$y%;GF_7+jy zE9A!qkA`@AttP_P*mnki)F=frc(>W2b3hR&Z{kY>qih#l#hnx{{R`?;=Z3zkoMz$& z(Nk`j+49%bon)%lI`=UE(NyFHl)Ydr57h z5^XLgisvM9!+NmKnS#Nq;W5$(6C%V>nt~3n6?U`#4aVB)l^Xy5%1q`HipN|0f*PlRkLV}zFC-Bmnfy~UN4YjLE_M5zN$H?v!{8QQsugmlZyg-^9Cc1Dxo zOB!-?CZS@!iF5@e*e-@PX2qFS`_Y7T)>;?sHMQz;`O}eHs9LnbnT>Pp$VOvDH+-r< zw~_lXgvoQ}Ix-PxjFN_fYNzhI8yW}bGY2gniB}z|RBwqGP3&z6Je^2joOV$ju?9G6 zi3(5+-FsrYsaF%_e(Yy0y%kW8@0Fgz8KoF0k`kYzWY5Z6pOQptti>Wo|EKb&i8`M4 zVzJ>54ymI<^j{*h>y;-CS9uDrKWG^pY#1vDa97y_T$iK>8lCkCyrrjp9?>o`W;!8z z*-lJdNCZvv@JN#X(lODo_ASJwTuBY(QShR}lpJ+Wfaq8zi=$MZzLl-EuF2Pj&2$@F zzq7n7=m|*8_p4A-B9~^FT|77G|4r!2n(V&xl)UQhM#Ok+5B_bfa@$DC{*I2N6~pCG zzyQ0)yAIpY3;Z@|SE>J@x}`v}Af;DK&kHH-%Pbx>u&x+MuGdUnQ*|Yx6?eQdzhjU3*j}#2 z)j!z8VSNxSzO+(mTBq$Ek}gM6fEYrc-kl++ZzsH@3gla#`Aq*d5^1R=AT>w(SSnX_ zUel^LJR3%}oX-hz{oUG>bbu{COygueRDY)Pw6cAxevb7EIiYmr{fsG8;?~Wx}4$bz_;S;0l@l$`uAMfLg zMDA9tS2mWe!sm&F$*dd>iTDRd9;_#GcKVGy!^_Lq<&wJeED^XD`6jkPrTRK;O-D%b z=irbqL(~i1hSxi1G?FF%oqtuMsUO`XP7nj@(fZe_VBkvW4A$H{ajQ8C$j0Wd zI`Fyq49U^f&^dm+w#Szl3*SAV^s!E*J$o3HRF#g2lJ5hzIe74fD8CH$8wzQ#Iv$%V zy2>48=Lb;!PAZMv#b=0ewa5cFa%+JW%os3ic!r{{Z(ZZcGc8Ukec%u9-8yf?)DqLR zHHIO+!n{PkL;xe3fwe?n-sU#xWHVWwXqzqkP*rnu z5O7rtun%%WFJi<)zmmHg_6N)L4M5dT|QLJfD+pL+_((ED3XNXz>vJwE+(t~gyI zu&mXPk(1?Z^Gt{aYTLFLw5(B^r7MZ^g85nx^}OX9pl?zwuYZ;u>t;h_8sA*ciK^J% z+^UgUvc_!Rp>D;>otzCJhO$*NAdR5md(VsVDL+{5(&@x^JU`Ue^50Pl89$dI1lVeB z1JwJc(JKai&~C=j@pi;UNwPdo%Y$0t3Eh13B%iLF^R#L&McmW1RPP+f=@>| zaIT+MjdmLfH2<)8yr&~P(T__#HTP9WqJuz*PpNtW@Pb4b+f#Q<5%M`w-M-9XpUwfz z0tP{UHMr+B6AXvTLdsK^xbl90Ca8f`s9(7D{2Lzrl06JWn<1#qM=ww{V{@Lk!7_Yx zzwW{v^$b59clqCh*=yPtZqUnqR`~SYYq_9z$KmuT9Z`)LfvR)o^;+~?a}8AO12n}& zoHys1nXpq~4>~Zyw5iz+1(7a9PdTVQe7A{x*a>BF8@MJ?D~|%cv_I+Z4|6XTsgMqO zrTL%vjoV1VaQC%!?WCDu1@#Rg>F{u9&wYZ|>f* z%POL-UMyKjLe?;fr51dv9BFxz+f`np|2cYx`9riIj_T>RO*h%9c%l0>Np_SKB5^u^ zw#(JsaKKg50sK|ma5iN(O{!uecL))$T+0?aFu|iX^HMk`DGupn?XkF437RUYAp=yO z2BSn;o)w%2nl}e62h3unK`Lq45M8`)g=5J9t_W6Qu({|LV=4&sQ%N6J*M@jg zUxu8Qe6AamsB}6{L{3(phyeNYg_;dm0w5KAA1Fp2-gZs=8%SO0{k-!Xy8H+T>cf$#ua_(=8$?%-;&c zV6L<*-;Om8x72YOmaI!VlfRs&t9h~j>&Jf5Q*QncVCv55G)}ixg6ku60pqn`vppy! zd_PAWkEjaB%uzpHgECnI(lfSliSBladrRiKZ5iV(7kuj!$^wh!dVEEXdPiquR7DBmB*lIJJ^YAmKnF2@YvaOzj$O7vQvgJ8QF$*1OukZ@^yyy;a zB6*pWt)@NL>TQCn1BJ%|WpE^=wq&|tzA5m|4*pV?-v9-v8j4+%=Y^sg>zkoP@r^By ziB#e{y3A9R^aFVzTj$A<$r)uEI*KD`vES3ja7?3iA5pEDo%O_Uw@B*1I&^z%@*@Xx%mwNfFO{dz@OMCSwVJc30|E<{|Sf%X$1N zOiq!==br9OT2t=%t==>Kx;pt6G+XrGHnHkK$to90bvfQGcD$ZKi=Cyym>U7|nhB?s zfi!Vk#NWVNzWWN9+Md?-%mXFR#T;oAgD=d$X05=o!I-oLdl5Fj797tNaW}7YINWl` zT|=-~$bv{6`M1c;LI2XfQtpzj*D&Xfx#2}J&J;#|dV?MHOv_PEV@$3){MHu)s5r)+VL z_;Hh6&)G(~VQ1qO%;FZS*JaJk(MrKz2DGwRgyb!)EHC-IKyyp7i(KZrvn4P~PS+G% zE{6;jXQ*|*mBYD?8-6QwDMQ+4NwV>m&Hr$}w0&PKQvW0I|s{65TGOldUwii810=JR+yu=a8bsy6ihenVtjrFJKqH z9^eQ0;*iQbF?zDE&ba5^fNCM{I8W|_xKqwCq^ZAzjcMKqdbd(cfvc-`75RinbgYQx zXerwmQ`o*0!%b7HXCDX1{<3}b@~gBZeerRqxymh*&KU~?5?9AmM@i!`D;o{QE&_tA z*YMjMLEUHez9J79+`6t_qq_ghkb)sIet-?m-%02%VYjci3dDy!u3}C$Zg6jyC0`&K zt$D_2GI|kk8tgKy|q|0Xp3LuUU9c_x2km5Tn<#%9Ot7%y|d5cGz>`RgG=w zw|Shynvgsvt{(1vxCDQ(G|bYLAiWeBT`t5o>!n8)xk}^F2|afe^EwNb%2)g=4>;VEs9(G<4nXpT_LK zHlz3YS&3l;u7_=936DszX-N8P=ROvTkei~S%VGy=j2Rs-)ed9odz}Duir$FUtFYUE zpip@ySUU0uC5?F74M)&{N>*FH0>(e&iqiHWl2?AT{7mpXmE{` zuhfwb*oBDg*MQ5>nkQU~j(;Z{?(?RiyPyGtuQXWdSv~4LKZ7M^tgvJ&8sKi$d#dTD zrgAEY-(gV`FHGFaqEQ3!hHMM+?R^sdxWcq$Uo*Pycm!ur+Z$ zbfrXXlZ@!^bwhD*b?GTHl0^7`(dcUnb>vt?o!dk7e$otr{Na-N{n_C(sIqDaMi|oq zO%lMM{p4B}yxv29~p zqhMqezwHc-ILLwVGvxBVz&AeZ*mcgTJR;^0?C(ptk{TxV#qy<`qMl2`YBSqj_X~qn zt7?HA&?bzZ?3V@qOo9Z=5Ux#Mpt3yH`Tc1XRvHa~n|mvs!V4FpA(5lAbk#Co`DmyP zkHDDJVdWa6>osF}WN&WeA@Rvcn^3tGGX~IX*XDaF2mRQnbsU(mIGjnvcLJmfr{<2r z%P~Y7c6;7JnrBCxfSI_LGOWHgmUMKKjCBvq7SrDeA1hEJ+B6Q}5E9AX*qbNHa42dZ7 zS zk`3&C$q^(hujitn*4ROax@h}6`9Y)br73=Ia|DZ2-X!wmH#Y&7+LD57H5Y+AE8=ZA zh$&>a9ruhUHv{oi-(H|$47mD+8yRq0F%_*Z?VjR zPs<@;xzPtW2St-r$<`f;pqhoyZ){gHm^ z@MT|fq%cEY!{6xGnX1*7|_y#{bqW(X9n=n*mAJRRBG}~91ojAJ5+IJl| zdRe2Y&V?3G_y9)!dZW_k>dMfpnXh>Qg}4tQ$N6T>{0yRjFXYi z@!ZR+Y{XKSaStF*)vk7@mKVG_VB#8D`<(nvpwWKwywez~sH+@eGhZ`qi|+9~{r+j~ zK(($$07|B@=v=z{1v=`UO73he-&uTGwRBvBax)o(@X1n4hn+YDY4>~ z6`k-+9rDuQ&WUS0=xms{!cFTaPwHbuC9jMdPb&l{QU+%1tgJG?3VgV59e>n~{%(}h zwMp=g-G?r$qbNF1ooK1C*80dbO73vK_En}^l8>>$`=N>doh1P{BKlJ-Q=K%bqBG2- zsjf)nU-sts8x57Zu?$xPG|0XVxse3yoBfn)-L7m8S3D}JiyZ_rTRCaOJhLyRF%CZ_ z`2hFNsxaYU0uJ!y&RJ%@VJ2Bt3ESV+Cl@DmZ|XRPA2Sh^KO~u4ssUv2o-*uJIzQ#} znl8C97IP03DH}xZ5ow?`NNV|yq|%L^aAvZ@Td!zRNBoTzRz01r__yvtK9>ZnH`|NV zf$M3ryi8@`^ncR7z{$TxSvG0I8lcRq$MQ*mAgtn_%gj%pUao6L^>$GO2x z5Gp=b76w;HEIq`!UHHi;MCNKjH7!v7shHd{|0Y!HFvOug!mzFFxxC+OD8* zK_Kzp!j*>F+%G+eZ#J~Xz5;e+Fk~O`9znA3;{!-gb#!%pyqklu7&R5!bvOYJAEoDI zGybK7&mRNP$_NkkU#Yj#lE=Can*0!2_!mR zmUuL9(Ty|aHS0P41Yds$Wr-wVDT)5TDo(*D+i$0#<4KzNr!dt)=|hqH_LFizCN^FM zo9}ole=c(i344jTAKf(mrcVC`K$&~(Zb28xTNzDzgxd&rfG+wU&NHh5ZWg@2!nqTp z*1wK(JzjaT77I#AGtZ^5-@6Iq)FE}hxDicPs@Nio@3OOSTwWFQB?6|KSlv!R2nuJE~kZS+ZzjWB6@dSOhBDbb}!0(^2 zRQE?EpCjYmO!iOr`u-{fhKUtzP||)}`hvg^1N)1c@IF-v?vP(CUVX)Uh;^169annC z#rO&}VC1CuqkHs^6(4i1JDWmj?9!iDcfB=H-N8RuUz&~!8_MoIMPM|W8q`x^J-(tiPeyCiYM>Z1KBp9F+L&R{g?;?`YS>X2ldL+ zs!vylmp?i#-gMcitiUl>wKqs(^^~8SHofeSLq$%J1rG#}1BW!bt z4_rf=4N2;r-o4zXeVtk1tzO#?t_7xiQ~Xy-HO~_(c7c0; z8JY8^ZK8}s1X(+MaYf(b7ea=7oMr0xj#i*r`zjke_-P|r-R^&cvuBhY=4RCde32+4 z3Hl-#`z1x0*9{M9C|?(85D{;icAn0K;7CTtE=9`XMz!t!yF&E_seT+e2N3sld^lK4 zUOshKtilM*VyCSFNm;YQqRBb?fiOO7vj2(~su*TWp;p?-lxS>3Sf*l^o_q z|HHDHIJ_lG+AZD~y~Nw(`?oOChNRM(2ib;4!aj9PZ%|ByoayOi`!yH=H1jRvpLDI_ zNXnDc=KpG`?my9Vo~4(vy7{3t;-Ek2n~+f=cUbktg^gAbSKhK$qm>gi>DsCJOeR;A z0OcJ8)Q$fp1+Px(fW`q&@M;;VqCYc^ASEHeuOE?q(`#pJ$CzC8kET*6CZR~n(@bXe z?xD=$XC~DCRr0^3KZyS%X}h-(D0jJZ!?lKMzKS0ZQ~eoX5Fq#PV;7yLV|A=kBBFKn zz81uUiER%WW0$&b6rJM?9&8-@$^4<>FQL=+| zD?frOX5NP&bZUF9{s_lo#y_J=Ebv+-)tr7_Vs=1^U+Wmb%&jOShB87`aw#wr;$;uD>4 zbc^{|&S5v!rRV#Y!Jp8SaaY@7Be9B~rtYfuthgJ##!q39{M>6BvJGW)x8$i=O>*iD zkaYrZ31G$^sj!4LHuJ~UVLsi8T3BCrs}t#%?vyO*fcof-u^{}t07|O*Sy)=M%Ma&q z*Y@OAD=cz0w~w(jKxP7*7ST0C*A7G~!zNP0z=57l&d<@yj`dfNlnOEssT{8yV$;#v zV&6#sPIqE8&}C{GltLr49z$$bUO0S3qzIjyW-x|sI>~P8XrJfajk2i6H_@{;I;Vt@TlZDo*WS^lG)l!4>1GrZlgZ#kh8(3O=D{WkB% z?mzKA9D$;H5qIuhg2z_TD_w_|mJ;(k8=;hQ+t7cHOKKE-ac_1=&`+H7#iHL;|2$DI zV}LP;nneOKPMJv7+lp@*+x}0%upt-GeG`2Wt15G_BRu)l2!@3C8=OsRS+6i|Q~Ohm zHNA+j>P+zBkTqU9CMp@sT&$c5G^G_FL9E6{od)5huBiR!FTlJ%cudLqvg$xq4U6M| zZRUs4XU3o(JbhTVs9&}w-R;)CUIZr7e>sXDbL%~bjNIAHEk8L=7r%~JdM~N1|E4N& zL0$jMP%TTXFJPS?Ju16CQDQybRiGY!1}!u=N>!ISPWb-`J*Gu9S8$)Juag%kc>)R!`D@*%x5F_?tSNnR9xtI=YVrY@w|dDn!^m zq)k4Jn;4;wLQsuja$rh#a`Z|iXP5Z0Tt(VyyYIkEZ>*_M|1g*srJ0KDo>1iG!-mR< z#OK}A_nshjrXq_S`Zg!;T0WF;irYYpq9wA%>hxD~)vpI70Pz0PEZoBD)6aLQJs*|O zboaHM!r6mU^_K5vf$>x88Oq4E8c&{zXkkc?RA^lE!51fJ2WI~Xe(87GcsQ!}*k^uo zAtu&uqXygzv0^~?!z_=5NEkz#g*_(n$RJ+*XPEFDW^KUU5Ra{Ru`fkBl(L^#l0xIe zDm*2{zN_#7!E1;EqxmgAaXR0kCwf~{I1NW(*GMY!fdSAIt@LqTOwndZ;@d+fsL8U5 zeyWPbHGCiM`^ZbVHRTedsrnAsYB(`ItZnW(0jvqcsWQjY!^Q%=vvhqRi-ZCB*Cm#b z4?Vyu1ClqJ&94GA7Hs2!;bei)oq4wHrx1l^970t?f?cL^#G>)K3tbLXOaG?9|NUS-}7&d%3wmfEL=MQWILpcv|49nD8qY31# z-q28$d9vOJpVG5K)^Lcv%Hjx&tM}VeRl1Qoq%dg-Zgw5x^W3Hdy*A`X5q!+vRY<=L zt&7j!4ZN*iZToPNwy05|iQ&cvV$=7*?Cyue+L-k!^0fazl?)Syo{~}QK ze`%&oUFS*_XPQOTsydgrQi)*ppCHR};8tN$<$f@m85^}**FjhPjA#V>Fx!~*f7eQ8 z@C4+yU7AuPxa^XC6FOPC*~nPBr=5xYH>MFeg@1t`#z?r$ocHz0t0L)>n6VO6gbwT0 z@ml@aaEJ5+u;5AjO!o`7nhBe}Lf(3zknlpk!W|5N!$l=Y_GnXeCFl`4Z@4vT82{z) z$`@XWw&P;t&c=mQ*7{#ZNu`4;UqOjEkm<9FV8B=CltweFaN0{>C22!->i<-^o9=EU zXsBTX@yoP3H8Bc^ajdX3*Wa6VYK+dBYxXb#h@E3C5;T-mqHh2|RjKwf5JY<)$8xxcNZVYAoctiB@))r67iY}5KW(9+9X|~irP_rigx$eDmY;$AhR`{+ z?(RdUd^o5Llm9DcMOO#yP`KJkPBED5`zmJQqZm`M*O1C-KymUW~TP`i>^U1sPTo{dpIr1kI(rd#wvHbx2&Pt5rL1)neU z(w1ui(yKT+`!i5jRKqoZz=BpT61s`j-uvtl+8qz>EHA|eJ)%1q(agNRx$O(J>z!Sq z%HK1oFuw$9zboPd_H?L^<%~4=#33u~Q%NbbvzR2;I8*d^L(Jgo_B}dZ<+7=38(v3# zd$}fMvGOP&ZRn$q`O*t<3%-Ry-ZsjNA%-KWWXk-Cx^#d)dwwp66rGb6IrjYG$hDd= z)*v0)w%>aHSp&9`Ra`_XOu2hP|KwdkG5ikRWiMEfyRH`e3GL7Vq(aG!AX6Kbz8yF- zm&*S+O!dP2@2k!e*!hZpch+Wx-pFPakJwZTzA8b-S2*%I;Y`#3uy>Nx7yw1`tlnZo^ zkFW5-&mx0RKNFcoo_S)87(ns~&+h_ph=WJyQ3*9UZ3{x?Eq!nFq2damEi7;TFS%8( z7{oAN7~bH=@v%hc}}RrLrF^*Oeq_AA2Z~Se@y|3r=_*;7BKho z939%e)Kr2KgHo-K)9JFtAUNweRBeo+_7R)*sVvGke`u^z@;5l5paoq95pFrCam64x>rJKP?fGg;q87 zd&t0!)*uko29}lO}us;Yg!(mOPi0lXh_Y z^X8(W|I2_KI8MOA-a=)W{N+YvJKJ~mG9eB%nif>p#L5%CI$ zon8Hj^Bg6Bf_Q(L8XjEXc0HD??#Zmc>q_KjE^+~fe^SpV6C8p}Hwe0S(<_9w8v~so zBP$qr+9F*{eb6XSyqA|R04CLrLzCe%Zy`KV>p)rCn!mQvIF*ggn5icD4{ho{G^zYk z=eo*h(vdj+9i$oe*MS{zqUa3)r^(RsLqU9!)u;Y1Lu~CH9aGKub~FyhOT0loSpheL z^Jxns|M;B9D@fTmJA=EU@XSM^ma9nwi*J^f($Np=U)!$=)c_>yfY5_`CFPFPbhkz^ z8E8HST|WYdCkG|e->&dLr^?0yqNEX8*JD>Ov^b?=Wn_SLRv4b|lSFk_=)LvT0LObq zTGp+jdL6ZXk1z`wS~l>{oEjdv^*G+VPNMNac&!*&*NQy7=aQ@AnsEMj5vi zdoN-Fl1zCfQna?}b2kSsJ9XJ-BRB0pOFP@nbJP1&c#Yl6L%p6W7z9ePw z#+adPRe>X@_VTmRaZk34KPh6mH-~oLu%mMOL^bI?M2?&)%540Oen9@kUXxoZG9ID9 z5nMj5*w6I@?Ojn0&dC}HAl|zLzm&;H}C+tv#2COrzJN-PDc@@*ieav6i;?J5ths0}UkX1X^a+L!a zX~HiLNbYO9{qV^a0l+=>JW&3Ih=40^@UXe;edVg8e-rvXqfCYRFWnEwROsXa`4gE> zjl6m3=2^6M>YCC+1VYZ$1>TF)@rTOK+&un@VBGdKhjjZ($b~&-)5&&?;gQi`-g*3; zH^;YdI7)_2-Vd*O`u{AQdsLF?_x8uEahhhLvLZ_*Q=_t^vc8IP7%MZiWI8&TN@b2& zGm(-a3Or>8ElpA?vk*ENl^Gpu%v4A-(M-_Hvxx$V3W$JmKD_+adjDrVtmj_$v-iID zy|2%8hn-iM&@6Z;;mv`Vwe^vk)>@5=AC6Z4f{ zZW+?0v!%^2{xH)-9UbYljgY4~-%1SVc{Z5+S)JCeDmYzitFIM7Z2dnrwRT@-3Z$mT zjX@p&DUzIt5+-gHLOUnN00705GVY3rBCPRf)`$4JT<8`h%T|pKfO7r^07h-Qi97kY zOLbE}^0aH@=BVzgup`6P39r#)0P3R4I$)b@RUrTL0DgI;se3d%)%K^@_6*J`Vl0hi z+Fv$Cz&unvuU_^QyU!M(NsctnDF&YH-s0J9CI&v~6NDmkJq6xh2LR4H4l>3D`hPo~V>+QlqEonS}XHHIYdr zk+w>y-fce@FS6|y_3tl)BwGFP=~0Y3ML&Qu`MePQU+S?2_E%HMLNwh38kJ@4R1ZHM zl|9sJfNA^cIoo`O*TU2G$%i*!Ez>@1^iW&?4@le)e!%V-;Ux%^eYElE% zTR*I%TtW-NA{iZKi1VPd;tX_-ZMNwzz$CA?1)DG_7BjBZAgP%`*9SEDsiefZAgi|YRx<*-T+Ru{yw*xz}4v1U%mUAEs{!CMjAPZTBbOaUg}cjy{jJKit=%ro?YzGUj zN?A8O99GMV40ui^F10RX9u<~=0p`*liCZwx0}LS1_GJ)$d2oraWHFY$80#L)IO*P& z*>h3)s$~lKb)YS zsfVf|X*4#JUk;jX6Q9Yybn@|l9 z2c_m)V$mgOl7j0~Fa9khi)e4%wHp}+-GU|pjF*V#L9dHGV~YxS4{e3UV>Z`@q(ny5X4k4nxfa{RP&-Wamrpx5-|V zswT=J+i~EPZ(=D^a6h{N&3X;Ab0?^Dq)#nAT0OdjL?wNlgSrB_hF-~ezs8W^ zYWqu1|A=lQ9S6~a-6QfJIq{PqjKbKHL5E25fL9FGmcg)c-JJ3kmuarn!AzNz=?q*Y z=b3MkYM-VCtqW)xpEt$oQq{;?_V>YxDwG9iUW5PG_5IPz7Mqyp254_eTIU!Xz#lQD z*`}$DX-@|sKzDkg7qox?oi@MklKy6j6ZEnYw@_H>JiT_a>bK@HO%Ej6_DLW1#wju$ zlpERQoIyRs$l2e6x)F!;MB?Mrie+guIYQp9(VrGY$dlxO<|UGi+IF}KZIsi^r7bW%WFNTY(t@BA=ISIA- z52D({4M)7em@>;+gBbjd>U*4d(j9XQdy4#``?D={iva2^oWfF@tgEfb!6}yl>gJdi z%3azoazaqU(s~Rpq?>r1uube-gt&-(X6(S;Fy9AGnw9+XbaCIp%0GNPa96pI0@AqknwF}+Y1xBV9CRstmUCN}x*pWW48<(0-j|}wk^u8aX**40SrR{~ zTTeXrAfuDxm5<+@qOTd9R|On8=hpE70;co`p%s`LPPhFU{Bj&4K#*ImwH2GPg=+_| zaWA@iO=ekA79oFw4Eqm(=1v|~+=~e0HO!agRDR)j=4Wivg|OaD!3+GMkq{o zR~-`t^tcrI(7|-T8Z}`>`c&oD60W2_FrSflD%@ZVpiZM0`&tkH1g=9m*abE{Fg-?J zTDYB+U`sus#^0xzK)ls_d^gbE#zzZ$C9P#YZzi}1D8Cxp4fsy!%!>HKNJ5zOw3Mi z!u-KFt`jTWZ_z)jr)*~*FFKolDYlO2r=eWNXAjx%B0n=iz3BrQpG3Fw#`3{SKp`Eyl?AbAHYt!<8Zhia3Q*7RwTyOAgU#`Q2fP+dhI13$!3 z&ECD(dYfz7`^KQMWZy4mRt=J3G*^ER4ykhx5cywxryPtPfi)FaD0lHt(TR*n%WA8l z2S*35%zo|PgD%YGsr)L0L85;Pfl6Kl+P4XFS?N1rS=+pwuN!tAEeY_+SP|sTLHp=? z<~2A^p#?{E!%-`BpDU%W?w!9F<1x7w{@s$V{{_CGnn}ix#$9FC?U(N1ap#s71^g_9 zw-G{Q)RNuwyZTLr?NE4SAtmU64*YIX0*d=qwZ-H}iRZLa=|Rpcv?ov%$pFiCqgGjc z?4_9*ki3+S`{^&#-@_|uccl^EJf#&>{&Ci?=;j$@UwN zlwfsFGSa+Obfp2 zP@$0bo%()ollFJ(GUMIkHou0ouRTL-MDtJP(ANDr!n?@{3<_kJ^8_o)%p%PnS2~Mw z@%23Ia`j)DNz!7G;?1X_O!FPTLaao%67m34J^6GB7$RK_SR}^BU9bkNt~Px`7mF2| z4b#h#?c$%cufgm7+#g`NQoPOzNGj=myEwi^$(l-nQKWv!ZqguAay+(A_k`7I}~$%837 z%oia$5&BC*i>RNtqloEWlK0dF&u9FB5wYTd`-xM|E>Xtnj*QoAP{d#%>~AvP+C~xq zoA_bl?LPh2s3%?f3-oRx8H;(_wI~)yi7|C1uf49BZ8~HcqHC{;tFkh0>Rl)Z^^$65 zRoY6;Q_JOA^6rdIox?H^XE-KUgR|{aix->zkhK~>vfr4Gg!~0uXO#3R zID+x1l8!w)c%D0){%HEs+UeW!+3LA>Drs%k2ZAGqS-&zh4G&%?w#y2G#(-q?^HyBL zt@|rX2h?wZ{s)n+Nt+}MDzbaA3(&pRVD}*yKJq8*DMr3vr2k?~`jnlk_Ze*4*)!*j zb2AJ1+~CBFxQ2Gkjx;;S!&Eq^Z6t5#4YMRsPk7D@r)wUMHXFDN4h_17YPyb>;hgP> ziXdGHfFuVYxhqLiiF5#%!#ygvc80&9SysKqa0N{o2W7$G-ueypjXH<)w|%V z1Z#mOt0Jz4B@N((P{WxIV9lY(i^x*)pk=ql1EoPO9G?TouT0u}h^?q16!c6u=`unh zrqj-HR#s(mQ-0&R6IWGTMLU!vPE{U=Yp?l)kp?KgQT_nM7#aF)GCthSJLA`uFlP%- zahgFMk>>{!e@t~yhXto=eccMpH(V>w>kJ>OhQdA*Ns~TSkH`k(LcYr_u#`-8NB&}^ zqn(++4U7E;dplKrd=IBrf>-#Q6-gXl<}>ZOm zu@ZZSh=^!gt_UQJ@&IjxG{AkyvEs17Rk|k3=)gkT z@a(knT0g_nu@-TY=XFAy*4K0k@zf`SDkMjnh8L$l!u9Y9WuXmFzV0%n0(e={RY!4E z1*#mAcZ$GrW=CN)Ul7l{0MXy)Ch*SLLTjPEz5xS%NWpu17&Gq_O*A-tDB22n*pj?@ z`pqbn6e8KIokbj{2OZ7ELp~Ysg?@DDBGw4q%`{!3FVN&_q5)~{H59*f%0z9$q~8Fi zWTjW>@79n-g$>W(Kq$f!{t^Dcl71b3D7{4NdRWs;5u54y=b9QX|E5pgxMIAsklW6| zBjDyB(H1%j&!5Y!j-;S(ney%2?^R=d{JK~E0fg0)Df?2!157(J^o63GZ6h@} zQRGySWSKdHew!4=FY&#Ko^on(thuj0FM8BPg-$&R0npMD(ASPPn9IQ*npvyQq>R|s z0<*ZgOa=NP&D$xT24>>x?N?cbv_E z4uM~tX`sDlWyN`8^~u{_|Ms z_*y`Jq2|3`G;T6%SP;_yS_pCOmiM5WV8c9vI83yyPw*xYVy`_~_4vY$fodpvI6!+v z)Pmw2joYFe^OmgC$(o?3^3);57CWU9y)`cJGmkD<#0;cbFg1UeFJgC+W~1-EwF%^rfFy&9=HL~nlQ%CYKOoQW?3pc z3~^AioisUDel^GMI5XxpX(!XobN*_SiX5f&*LagJ0;f%fWC_*wAV@BL+Yl50-3EFU z`C>)#qGp(+CFFX9`HJQ!2l5kx^_q4Sx`5S=sOPMGE*iNDEExB?_zo-$MU9#l_$?xV*wt!+MS zUM)>rz%6i}4u}S1PUb(%kJ~Ekny;?n07Qmc<_-K_ervT|8=Mk(EyhdeTwSbRpY~I- z;*);KDMDn*`5KgH?W>+ZsF$80Teo@d0Fr=tavkdwAk6xETBPJq;Yab!qvd*%PxNy1wQ@dW*rSwLDU z_tf|3ZdJJR0nf=RZfk4PLP+Np+7@I+q|KEMg1ssOa6H(^Akylm^`LCbQ0GiTvGN)&C8lNdpxSy}&J?bMkk9x-u#z>kBB!#DSw~8aT$i2*2hQVO5lV3ZFes$J94-21 z020qEa5~RTW$16}b24iN*mZ!G@Mi@ikRNnOxfc+*ityurR52C%bY3Bd7a%C0k8;52 zy|(W3slz&!x6+=hi%9h^|HjfPWy-V%%!H`>)Eofiz|6ssm>_hVni=3=S`?&G-|pHk z3wDP{iwCN!yf`}}4MBeunj{BPr~IT2Ju*>*s7f-=vofGEFq{M-Z?CzVKHu~k07Og& z#^qQaaYrrJ#uAtdi#~#e+%2WHnrZeZ({ibn5NG}DB5KZR(M1I~NrD#8J2ndSem$+B zThS;`7vc?e7|K69mD?l}yIz&%W$uujx9p;LPcH)F2NU)8n!LN_pcj~2(RTH;b}~fu zX_EppY5B<2m$U9*%p05Ms)4Ykc^;5!0e-6Ea_XcYd~g>~LPJgKt~5X!R=~kx$^*qb zKCEJX5pK+NTL!h}kN)C^%J*6ib8;~`nEsb6hno$An=P}9JEsF6f0^c^FOfX;>O0!@ zkXA4;_;zRm^)c+dfBRJ-De^kEJozi@%{-U|)WB>w-DW?3its=WxyeI*WO|-(?O4wK z`;{~9)eBIgt|N<7M^pl0J1{pW#x(ZrNMF<&bbgYsPFHjpDs7eYE)ZmH)9?&+d-<95Wj|sJk)kUPat}cD?^)s(^gi->3~xol|I9zCu$D zn2EC~p>etHfc)%~@rtB%q5RigCdtW>czvKchn)T6vM>yBz)Z4Zp_7A#hs~$U%SK2& zD;i*t&b*t}2H(+|k6MrwWjtuQr%B|)uIBc_3S!_FEUUOql$`)%uPGj=V6?=1H$iQO zuZOzI`;Spqc8`GRUX+XICqxZ_* zan8~%1bqkUGh^o!k=tjp*|G= z3)n!>>3+N9FDxLc6Pk|=Q!UqPi3_=rVh9-Wpr|?YGv9;VuKLZq*WO6posz9t)68>{ z2KV_xU)vJ6^pzA_p4LJ7E~?BOalvwB;6O>hdLkgAAE99gsFC6^xVOG1Uf(YHeWlZT zCwrIGm^E7K`SOD8rR8U<rdf zPlQCt!nC{E6)B6*pVH`ZEnfY|j0~Ip$-ExHHg82j=etUOCuPeYj$X#Yy1v93)EO52ir2B_R&t|u-qFmE;ltHjhK zWEC@#uAbY9HfSZoZWpitiQlb&*783&PUR!KkfnU(BRGxXuZpUeERmx)MVAnvD2>|+ zd8FQ6oXI0v!P;LaT_K{sdN6(661M{AN5cQ?6LGV<4F&qphRYS009HMyo$$oHDU9#f zU@HQW29;sGr%6(3I*hoe=p5yXuFEi~n8U~3=pSnlzEqj;J)T)WB6qutG{5ST;nDa8yP4MGouX^@O&nXJ{vF#?|hmeW=mS;h_*I4waPZhSG0DA8IFN-oS(WS(>u8P zEF|?@L9POI2yutzIILW?(rn~(iT8}Exkzpd(d)Dl^5bKVeXV41!4@AeMY8C z1;2ddOJXxDjRd~{V5RVvs?5cid74!!XKBiRjtK;P5cO_oSMhsL#y!KB7xfiaKiC%1 zj$dY*k9I(M)%@i@>Jn6_ImvP2BVCz3;e!P_;0lLzjvk)UWr!VfYYj?qFi|z1Ba{8i zSPmwV^Rw_`FpSYoX+YP*hJse=p^^{>FqvAC{X=4!gMFU%tMP_%NNquK`s)ZM=(>Ch zi@1d{<~JTHir{%UP5CtU4`rU_zwP*7M1%-b_#ANoRAOE>zK16*h2IsFk`~Gt;;}i}CCS^yo9zI)o?CR92HE|n$2rSx)nZB( z0h9L%grDF}LX(d%S?}>LwUL5Q1UhFn_7@?m#+%xCAy&>=C5ea z6dl*YNV=gl6vmi$etIMYq&f)bA~hM~Tz@9p$2OiZ*i6yD>5V!vPURu}EKwOu$@I{T z=t3b$dgZ;Z_7XSuD)ym4YHe|8bu^8ylC47outbbm_ODG@?GAnEW7v&?oA|1O`gz9E z#HJz-!R_=_)}N(`q)PE@N`d4TO`XBPu!Z5&yh$oJuDbzjcU@r%PwRlUUbMMi7&Tqe z&Pn+~goAs$=JqD4#c^^QXTf5Too%}!@q;r{a zuCe}1XGcKX+i4}`8-Udx9zaY#bn9N_R&a{EikifvSx6^zIO8KI`*V~87u$t6%beOR zuYS~5G?r}jz0F03$IVUo)fA~|&}l3>IYymmJ?k^(w0${>q;35 zn90_rs@X)PmKOp(7ZVKp1hz$~zX&yLX2wG9BHK#q=PKYo+ZmdC?X-J}6Y_MBgLOMj z?4QIm)hy54C2J;RZGhOTfF)JX=}V(CIa6NDYz;}&S|XXJ{YI3`O$qhZ4H|+Lb8Mxl z?^hBrjMlL0Erg%juq5!W9Pt1n^Bg^UrPN|s+X^vX;ik+AJOPPoN4s5)u0td(zQ zCaQk}np#9bR~wLe#(8CJxD{JyX+il5R~EfPNjkRi7B(Ld{YsB__uyZNrIs{MJlwx# z6oNc}>6=l0Py9VyO=xba^uV?O)ck;&(Gs%{09tMmotnwCxcw!cC-G1D zW9kF&m|RDEFPS4#ay>nX_2geAe&%t~0T1&({C_KO!@2mLk~d1&G2J7;n_a?fF}&3( zmhfYD2xzvu<`arcxy~~>O1&na@@&oCG*EJ?q-!t#(G)HOmXbFEeL0rtSlF%Kin+$V z>KIc`qqALp&9cY%dGOXMA)Ll#uXMOT8)AF9HNtjKkMqLMB+tiimRmPz7npK1$z~FN z9@DH_Ok4SCvBMYI)>kWkeX5msrvN{hGzc2@m77Bxjr_`WO@%y$|9UFXqC@lwn&8^s zllRL1E(fWl-_S5)1u@d%iX*_cQyCE{3RLM+lAY!CK6+}yoX^s@D7)R`EMiO53;80^ zys_rohnkHhC*X(~2$p>n`v1Z92sK3BRwjfoJb3nYb%8l>oy`G0!fp8oztuI5Nc|BR zx54m28jmt?=;9TXvZ~d(&ex8s&Q+D5Y_mfW2)w7?I8p zG;cWwHIV~akQfR&E?hUb%{oi>y$Qd~HXOQ9*>kH0XxA3CNgq-(kI?&%Ii=dR_x@-g z<|v4Bf#2b{-fraW`pRrfqRk|othnye>MN@-NZ?|^7)Qvg=qgk zhbJn8o`X0bKc;SjEeQQQ`8|CME|OX)0h9n$rhMzv_Q})CI73SxyXlyDm&n?nnPw;% zj9~s1+c-Dgi?TZ3^4%7xU1D60*aBdC-b#YwAq!z=ISVOErQvvla;rgfB4zB1?%#K| zm)g#)x9;`ngnO$>)h_RZ`>Hn>3GZxMk+#9<;i+Y~{fdtltrd>^&ZL_cl$EPf>8Cfj zpZ&-mrcjV4XqG&c2b&ILy4BhltJAE zs%n1~P$~_&0DOs`UN}?1PGP(`flT2ZhB;9X!b3zEU?E}7MK$jF{AWvs5MLYs327X6$ zppUy3V!jC?tBxCfjk#XwGF@t6T9=s{Ia%0`LgRI7Te)^>k2>V^kMsA^ilq@}IZM-@ z2v3;ulAr7aWmMjenrVHSDYP%dP=WQs$e)gYY(KJ+9F&=k9<42f)y#jpEL6~edrQxe zj#s|+O$wcnyle~sK4GVHhk&7k>Km$bRN3^C*et|b>@TRd*U(~C>~ZqLMYThz@dNik zna##+2@`Nlc3;1*a-F#>mOS{@u@i!7BHxrTlD)L##_Ri-Pb{5pL8E6$ILG%4=-7gq ziv4w(?7aeFMD1x?te^nf$ew4c1AllZ@9n4cp>>xPw3jGbU4;k;nhhrH6O{hA#w{|v z8Ug*pQ>}c*=)Xx>sfOp_GP{N` zK6W3P#k`^Z8L)n}xAx8$-Qa*Q%HTK?QCnp4QVdr_b-*GxuQ-XWxAOhY*?qG-GgR{X zvUL{w+&F_3*ZQ6`A(r6uftKuP=ejbe(>VKs_-vM#NX?kI9>bF}Rr(lAzb!aXNnd5` zo!oEuvF6|I$O*iB>FCy(CCdGA7nlmSK>`Q|0yrOeFQ=?db|A>rZyGm!>5oQ=taqlJ zD@D(aX)(R9t3PZJA2tx|iv66^kKNh=!4sc1tX@JL5HOe@p}PHz4&ONSu>S@ZQF@+L zf!ttW=7TAeAwynrrtzQX{*ezEs1Mg5dMW(z4A6EJbre9eq+_-`p_dhD2?3Dy$%g77 zUCrPpClu%>m=WWi&mDJUhq-m9-3iwo5u7QWQ<8Be)3*`BS&{DuB%iUYNRya$ zE$TKB9{9|Xg6*|AvOm6s>MrsJ&Cf~%B`gQ%P-4wG%};lVDngH#)=RtXEDv%ceoU%5 zV23iD5dN-k(u_a;w&$w(f5;0_6G>yQfW>;vfZ@02tRG3hK_wCZE?^pE`ziO)cZx{N zv@@dO8Wj|vmqn>$~MdUL6vNDIg$`>2?}w=5ZRm~VM< zD?g9s?f$GAj|D2U5u+`oaq+SH(c80CSq$GXXZp=b7r~ezcvIZ%B-{zk&QV&-bzM36 z6ouZE=E9vVU|1(60(z2***8pYpv;4ngZI_(qiy%P2)$Okuwq0ATCyLgg8CUI>vmA-Vroa&kV1sqwE1L zq_(C{9U4+8;(Bq@q?ZbSY&=L7Y^Dgbxi8TE*(cpT=& zW!YAwkCMC~r8QsDofRFNQ>u`c@dDeQ)n8eWmTR^;#3mG}Q++W**LB<+=Njytc9ik< z3G$w5byvT%jdrbj^~^`8B1#+2IHK#qN1NV)Xi5@w&Di*e@Hs=(JpdZ#ZWXJ4eB$Bh zp{YFBeV?H~N-$v8dH(G>WEZaq&<8C^ogMSfnqF#6aZ#$b1EqE$KTZ8&i7>+U3zhV^@>jA7b^uAqrL_tpg<>VaKqa?l0%$~vhP2}B{)9t>x zU5zW~&xH@4vRG<}I%n)kI zI(?NFji@{$)P`E2q+yo%k1QZ{A7PJW4;&j**LWMCsK0H0TT=#|-;&u{7n`i4!*1jS z`8NNbTTSIP0=kuM8NT05yw+i?Sprlxr-w`^ze6^_dDeRCo=l!GVCc0wky4O$UD?{8 zZ|m*oK1|it;!98BknZQCw2b&RGCMOGLF@ge&Ah#W)QfDO#D6Z*j)kk4 z38{E%Wqg;qLyeUpkG0TD)yscan-z@d4vlGbl0B{{*>Lp3P1eqr`9;a}+vX>=ii4fy zPUj)wzft!`?hN9o^}1CT{L0Q9nIHMcP3b6@&i&@wq@hl~-G`|sAW`A(FA(|?YBkK4 z|JglkK7@DM<(ks;FkpzL-)wtvPvK+t8CYS-G_RQX4qXfO1K#ss?JxsEY8Sd%-y0LH zEM;;q7OejnSq#2mS||0^l_~lTyRpDH#-V`jCrc<_vIi|ortF>$UJ8fNR^8=CwkHff z7!sXFspo0jrX{uJo0ZQJha+^%LxIiNKXYS%p%l<;6Y%o~wP`&u4u?dQo!t)$%3o?Z zqW+=XlK!(fuWXb1xoLIE>KWpfdrxdGGlx)7quHgD2+HnSi?|^|fG>HLNWrKCqGKDjZ(`c0xn3@p-9#LB#(V z;U&h>*x%UokQrqAM^7;*NvW0KD+I|M$~V~gCyhfWfv{pZ7DGv<|vz6(a*i={QL0hzlck=dnXf1NNT03v737vw1&M z_&`_t=_Aj$s&9l)pKcv^fx?(Jba!M#%#^M3hrS~llb#7TD|>X86PEz)=_lxR`rtk4 zY_#C=5$zILp;Vg${%@LSjEcI*f1p1Uj--^i@GkLxM!NX>b5q}u8KD382kETaN;~%NzFkecMhZsu zw49FO(kso@DA<`Tx!QIA+Ih(3CMr=0>#j|O@F>41p)*zD7qoC}OMWwcEDvL>KG2S~ z+`@&JB-xLp_u5f21Y<=ioRPpICJqka z=1>M!&<(Z-vT>E}mDML!8(~HW}nc81vATp8vFTDGHkQfGMe|^MtF8^SWjun|U>NNbg z%lEW7ma>nz+VMoKh-5!z2rMO=fw6lB5&v?XEaOTNa$-E2#Vi(=#-6El)qB&GJ9~4% zYS;7*BTAs?N#sBmPj43Fhd%wPaRo3jGv8%vfx^i=bRxoQB_PC#*svYi9Lel!~i<}B)1!k;P5&3_#zN_hsa!5|w1AN@9A|w1!>2XD$#J@>dyOFR?xRr^LsO--e5b za=Q+){IDBL0c_;i!Lx@{&Gp z+Unc-qCWF~rg?%_xX#FFCI&RklS@gTyxj*zd zi+o4@bB02BZV5;!OlO)_kKhNfEdj{s%$TXWKij3E-rEK4SB^}YT;#%;X3@(Bk5ZjD-QD&KZ$q^8Bgy>mpSJn)Y&_73o z8Y$N#Rrd)pid2r)j*dP~s&6rgVQ_nK8pp+)Mt}Jl)NFqJqS9P?8?mbz@E1Soahy6v z!LGJE9|+~&`?FXV_RV)fp-X3^?aV#Xm%zEE*jt+z=a)|-?wRX95+C9FPPC%f|F&^K zkfQ1&@UAR9TCnF~iE)JTYVZlYOS%>_4C^a3rvxD}RXey9L7SORq`b6Sj6C!VANvH9 zO*4HpZ65m%y+HqoxxohXkd~ys@g;)hk#dBkh>({OA&76#eb_SAYWYUjCAs;}{Q1R6 zx+K(ufb0Q01kd(S9>+8zLhO?2&JKvT&MYdF$rUza97P{+YS9@Vlf=T5~eFmEUCql zW(1jtsefVfSEUn`D9ws}kvhr0dG~ZzD*s+`Mm<+HQ}d-pc-qd-D+Ydx(qAeIla>@-9@^~l;kt@RUb0w-(=}fS8rx-RM_k? z94t0pJ5)p}vCyc6!W_RD^>x-epzqcO^wT2$t;B%1W=NHijN8x$Mdk}-yvk} z%1l*Ozc@FnTuMktxAtA>D?@8enfw|XjZB?9IjBVP@TrgNck@YJpC3l!p1T++h#x)R#!R3t80{$kICD!IA?t8b)Ax zgEiImZ{6?JxjK-9Hu=TZ;VI3n1?uoOEu_U~-q;d~LH8vIhSZ&>Ww!k7Ag761HXL%a zd5jqg!dpK%qV9I4NrY0u55_zaCzdBuY*$9zs^Yd+3-&ldhD*#B5I^~nbPw&u0M3Dl zrPibFGmO+`^A@@84r>tQ02w+DH8)VsV`|ucgD%q&zQ#EGk5>QH$Kere^6N5(%QUCf zKj#lyT(jxajt=LKSM~iDX$h?>9Tc=Hty}FkKsBw)fiZn8{;$#T;*(749!ARukv75_ zRQ_{-^wAmdf@wDgsJG2mWf;^6%v!}-Aq>I*9C7Nx&qU5E0^dz#K8 zp|oEer~oy#;?a}AQev^f{~f*tI26&?Vp*PddP=s(u1A< z!gilRieI2uC0)tsO4DEKN^su~nm;iCWvip?j~GvJ_cM?thV=GZM=qcuj1Jw)d5ipu zx{Rm#wKf~AkE04w4?aOXw16C8{Tn)r17asilfU+|^oaNY76}ZMN#$kC$aRA#FymmL zh7=%na8b_GJpYl~pGvZmi#zdpKf&7@KI5SyhDu9JtpHEtwVV`oQj$P`gm{1<3mAO7 zSpdsRjIs+C_cMw-dF8hAe$S@U*Sw|59{rPXTA^hNlh?>Nn5 zI+$1A;vjJGu6i%QGs7TrX8f_}0wfz-EFB(C95tR%#UwCnc0TgkU!mfK==tx<^$f+a zzGuSUJCEpM@q-<{K&sh$Fp=&fz&~ITBQ3Y2G$Q{bu!wYVexDS6sPWlM4Ya6^4F-2= z_SChS;5Qo{_@Nl812S3?aZn@NJlPeP{dY+R<*NxTxQL#PTvxId^ulRY9NklE`DtqL zK>3(G4o@x0(*_ zTjVTGFt6*yf6`h_#euuZ14fdA*%^%#)Lbi?8Aw}l_B-D&*Fh+B$&?^yH?XZkXjco7O(av<;<ZZe;O_{?pwDo6}zgrqy@;s=R;=vmM^h0l9ByxYoKDIf=M8al|t>0cyXN5H z1{ieG&9M2L=JYw~rNTQJoGI5j6pFrOAfR8$s<@{gX7mBKfgxnBY7A78=eOaUPIP`e zTR*U)lnYucNMaf;9NAkR<$n-5cw0zFq5reb#ERu-N)J0wlP@^Nj2%VPV&MI6{4-TI z!-nR$s|G1G;a!gioXtR)_-6_del!y+o{_H{n_uHM>8`GVR%%EdTs%Xy#spt3?W@R7 z%*;|9d;;7}epq}Km| zH*VR~wv`Hbt;~^@=G9anueYo$&0Lv-%FN7^%v4b1lx5B&OC@uVxpGpD++evU<;(?c z6jTIc$@=mAo+Pl36b%cE_pG0gHp_w_4zuFL)}@bsa& z&`fHYobF>DTuB!AtQ)VMojLEX_9PH*=6|68(`;dYI3_&L1(2im=kb#?iP32!uNT`7 z4)!?tME<=PE5~}1J>tFeh4B?v;JS!b_5}Lvf zHCXY7`8u&|NIEn1=Vd(CMxD_ykBHvqcpj#`lBo6%O2Bc;AMm^jTN7hOMaEnZqWSeVSdvB< z=ZDm(t~=~0^nY~BCGLuLCR8bwRkcahtyDI&gnDvGC(^RPY9GftTaDcqkmzzc9KY36 zZq+>u?O>iXgIP&9b*Ek9`v-Yb_zHHUE-sOe0=ifoK9QV^FJ_A8N}d@I5G#YcZmZS; zw(37?^P8n{{AO&1vT4y1j!4C|aZqGJT98fXF7$KE$*)%`njRBEDl=L4Y0f|qShzGq zwtG;&(?p&8k=JVzuOR8gMN;I!(5KDfy+}>s_u(xv$JV)qOjnScTls5aW<&jlM#H&y z$;BT%CV})f9;%1X4&R6H=1G}gSRAWvhp}WfzGxp|j4~v!K&)Hpe~}E9LYWhF${u$~ zYfGb_OTd?B05s+5;x~+&QvGxT>3tsmJ8V#&Y}lv2v;Mu(y4YiJxh-{z zzGRzVWoRNcpZju@D@dhH>XL-^)Fp>D*Z0Cu?Y`t=`FIy^CV0WKe#BD5pLQE|SRcPGxgFrjHVs87 zPwrjI7eAVK---0P*3}ZH5nWn45t!{`0=62szc${bNA#l5xqioQ8NeLwxrm zkw^NS+pWtZ6DY-ZDCHDFc~n)P*njj>*iGyHECY#HEIRW?xM=l*M!qCUSL$+wFk3iz zm1^h)OSRgQl|ZlWsKS!>G$h^gkJL`cd4oD4Tn;Bab`sHq#$*o0mag9!PdGvS-`vqE z^BgBab`rJ2iQ3gXoSdcCC4ScS{^W1WZIKJ8@R{3JIRcepRv=N;RKN_xlsAW*3S||D zJrtHR_&dkHc-ObFimv3g1r#peg{i!>x~m~xjqj(EJ^|^hinD4Bvz@yWTdU2_P0e?eB$<}E@v|jHB zsf!wH+DNIlYrx;0oS~obY^T4#uBZA+Yg8(D(hQ5Z-CCZByjurAsj)m~qXhDAd7?;k zVpMouxF03`C{3YZYvo~jLkSz)hLm5H?xV?92+I}}GF@a2yMnrAZafq9>n`j?um$x^ z=}-e=u$T7p>`I7lUFJlKlugx_YdfoiAqtcD`urK>--04}8g~B3SInYqJ~3Bb+h71| z;hf!Go3&rwtb))Wu3eC6nlD86@dlTs)^bR7Mqz^LvJ8` z<_aC*Z-r-%;IF_mC9UGpaNlvU;=SI$^$toE@JkKpRVNma+DoFdt7U4f%i8YW`HuU% zYYz$dYYp_?v7M%dgcFj`wu5ro3OSXQ@kxUpnCY75-bLhw7AV4488^B_J|&iLsk_ts zPP2amWo@?7u%qQWz{u{MsGfy16Wg%2@JjAA|C zpPR85UP4=KAWOEuWJJq!m5;VH$_q$JMc*6;+29SkwX)r&m86EZH|tt-i3Ia6fYJ#U z%{bO_%?#dDu{a={d~7n8^d5NPzp}+$+eMj5&DaV(I*fTL|2I-Euu4>EKhN-7b%3>X zy+W)HmmsI)&uBZ-yPN3Y*t@q`z2+~YHLIyAbR4zrxl-6u&wXosP&x|GA2t*k&J3hl zr3DPj(TX#w7Hv)y3Wy=HDAi!K3ZuX*g(^Uih+aH@$Y^;VRVN)7q@naqRW~5jk(`FU z>z$>)M#gOAtg>riI|S$9H7oJ_Wh8?5J8;OeZlkhkpDhQvzdkyR+e`gWRZmD{y^FTu z&1;e@(`Xc#Y#9(tJQy(zWZCN{GD*q#}B)hIHStFYyE&q1O zDi0~WkLs7J%SZKQn&MT2*dBAmp*B{>bJF<&+Y>XxippU%AxpQE1cMt`g)Z5nS4`7cz6g_zwS6O2~ z*cJ?=?!uaBsY#I+y{%}YKFJC%2GUvQx~AmJdsA+D&^F*Jj*!G|6z^^*%vQdQ^1cFN zZCw2d`y8Cw_OBb2?~wJ9_23|8bo(zK;XdY%F@O}{ftXh#?oh3?m9)$2n|*Fha@pA? z!&hKunS@VpwrVu1+8ZQLVN$}czhRQ90`HbKgh3@F z2gI*Nh4B=5cv)r^{fP4xJsxq{?1wFh^7OZqGigx@5&QmL2+|$YH;c}q6;(~mg zju>vVm54LER)2>9WDjmmKY+W6oQFIfQZqLv$a9^mo^awXMbp2iye%h?#;Xg9TPn** z1X?dvX}vGABGVBfxiK$M_^o8pfIKjB4J=hfR(&_ZR9Ke&3@K0!6{(;HiONdOB4w2) z0Gev!)#}4WAD@vlAoE-2>OYdoB^eKCf|RRE7F{iuNJ(%=P2N6{qM+Lz6H-`3+U(E1 z(kcx1Xhjxk%7m&nB)9bO_!dEkLll)G;`V9`a^fxF%k=65GUL2RpH$Z^b|v)#w;AoH zXE)O5KKglhmSH8?d@H$VlmsaP1UV9rsC(uC~HQhORTIq&_f zzQi*R^EnN*pUft`LAN`@#f{zN9Y{&aRhsQ$I7R0iwEvS;5W{E^phLv;YF-7=Tb}AB z2N+T&1+Uk=&3D$!22OvX^16!6`J(oIE;LY@NACutYI>`Jk=LtEW!rdnQH<=}f zR%^EE!U&RSPAN^1C)QyfNI1FExIkgassKb&P?8eile_EF%$3vQ5vCx+lI2rys@@Yr z>FRTkoNbM4-5IW!M}xh9{;-Dip>pVLp){&-2M}0yUA{EM^MwY~4UkL3Dt^J_7~-=` z)!&x#RT1?+<(y6ECis{Y3p#V_JFRY%6q2AIwSZ%Arg8(8V;99n+AaP%iSv*aF6WoZ zk+i-$(Y0*pMv!|we$Zg1vcbgX*WIuH_9`zy#Ug)n?)(M%gd3PIe@05R5?@P70s7_Q zu8>i5mVxk4m>$`>4kos*#PlR!w!R7|)%HqQ*>u>yE!S!CW zz$K0s&Ff*hM0(nk40tYj45JCA_%0%%5ZnxOsU+$_6pfA)O_%#OG!zm?^lK^> z5RM{*?zrRPtpN%sqWn>v)oC2)AW-5;DDJ|*he$yCdaXDvs7gi0cBqos3WY1fiXT}O zj}ed#!OPk2IN-{OL3&m3IL3idMu)l%DjqhY6iPtJlt22WDU}+^m1+Dg#H|$Sa3!2) zZBuHE)%6`dU8I>ZSM`k)G`1}AA{7@=%Se*xI7c9^GsctwgvZ=#3vqui^Uw68k9pkfg-5boU$1m!-9DtGqA|=Sq9$CfTDuEO~*dgr2DSaK_b*t;4-ak^$sbX#TPzl00 zd5kfn9QPCasA>tJD`gxFaew*%Sdf&3-Wg%Feh05Z=&T`$>tMndfsfUx50ZDTNTOQZ z2lZ}qtLRdXgVNejCeECS5EXLKj--c=MgKcOg)S+GyS`hfP&A4!VGVIz9bvk@Z6#qC zP%@+fju|O?8tiBm`h{9M@2M*lwO|=5I7u56&Z{bfm(%O9b3mM=Y_n4`PUO|5t5Y?6 znyEZ!*_BZKNG2K8@9M-|ln)jo)lrfpnP;k-zaA|qY?E)}G@%gJE7}8%5}hb%8}(uCUJCzy1=sya0unv zHHABnfS?X;&|-Pea=%yGn0`b3ilpjc-9`Rf?Q+vaK-7RAx=yZLYb|^l=prN)QdC1p z+G^NXJkJ_dJPNo#Z{r|e;lW*hFkLHzpph+}b5oz$&s@UtwgB!DoL`k5(RHx&_93j} z9QO||u2fVjd36zB41whbSjy`fHO6*Q065O=(GSbTw5GFe5<-d+C@*! z3ibrL*0*>41RS0WziBIE3`H28qudf;9|5}{;GN#Z6BQ3dj>Fy~G{y?4lvgww*wt6( zU+3irDO*BJa4Ht6i+J!V_iFh1gWoLv*oq6EnLYpBk>63fguOWIHxlH5lK|DF+}n<} zr`L&tD|REEo>W2@skBSa&5@#COF4~hm4cE%KxU_Io^L@jUT^W2_sb%7-*sHf=`Qd9yz zH zNLfLe=;!@O?w{Xs?4dAWpDZSl4Xd#pPiR2AmHMm-h<5t_=F@>8u>=S7-r zE5!W#yn3j`bA(#B9%y&IoGPv=W%0t)KwM}y51cG32Of%oL^^TOp$6tK1XCpWEP>I5 zeuGi#kV2I7%e<%j_7L57X9wCrs^FOJTS!J(c`MJgLiH#x5sGpVp5ayL32XGiE2zO7 zOchlhRaFSR(MHD+;?~qRemW0 zyfE1cPSwRRL9cE_R0%4<6wx^sSuR1DZBo!dDC1+)#j%n{wr?a5?ejII)Y|2!Z!^WC zrGp6FbT1m<9!&nl2_iTB!H6Q;3YT%ojIQ;)C30LkgYR1}r~7(Io=Z}6;(ogFrHAD+ zh4e@Sf091}C-O<~kLX}_P1qbj^KTHAQvpvJSEY*Sh~ZEGl6eE41gzW2n8vi-Fpe$L zQ7L@YpE6ZWVAcm)%B0=BU1E+gffUXddSkruxIsE^ix}@~BEtdh+*q2iKct4E5XvsX z8Iw>mEn|g}^*F*x{gavA-E>kgt;fvS1I00N1m<|)abo=yV9vwU85$@|gGWAh_Fo#W z4fLZaeh`m#5gNiJJ!1~Au;sxqSVlj)>(?e09tfcI_A*J&7$D)<({LoKb(vA+(SV{2 z8dIZf_<(E{w1X4~6o<*eSs;J!+H8*U#NK3@L$G~vA>2Xem5j@;L|-D?7Ku|j-)oby z*u__YR>|$`iO4IF)@tVZTR>C?;pt>J-l=*L_7A7NQIh}}0S4adO)p?rMpbM_&uH`YAQYLZ7oGyjw%^oNTK0W_>ujSDYSWy5<&b$`B5= z3W_zv8>O}dui#nu;BKXvaHDk=NcKL`mqHZB1gR0P13xr#6YsuukD&dhj)j8(|m3nni6 zK8AQ?`IdZ#Xq*2a{Oy9W-h!%B&H1!|o3?CK(|1a#njAu=A*tAK4cXxMGbE!k1#MIR z!F#g2H0^9A_tHR?s9-?>=IQ-HpYcqaQWySfH)TmYDkNYm#N*$D!b2CD9)9x5nN5c~|G-xc6W;BJ^iy7;ntYOw5T<`zT_% z@lYCS1FUP~`gKOw$i=W(CuO9CvH+jJpWNamc*UC1r~4>xR$3oXntUIOUWdqG z8p=fC;h-_Q7tB=PAzmEk_LADDRBavwnryON+BpPS22HwRn~{xPYFYbjvaTTd1{JGAj^n2<4i{=8#TDEB+kh``P`*|K z*UB8=?fnULLub-8GX7=|gJ0t}Pob*%V7UDj66mgcCvlH6IDV+tB*DXlHAvamMif#*6 zYPJIr@YXAR6nT#T8b?df=^s@x&5WU;Y;c@Tbgt@MwZr_&1N{jXK^vK6qjM-ATfrn8sujuN*;w;ZMCsO{9y2cGfFPkV6Edm)2_0B7V4Ds$w3ZbM1PIwVe=93Hqsawqa zS*nxN^dk<2&tV_|4LOpRX(^f)HCooNX5nn8x~2k5AApki)U8j+=P2(~tVAbe?}4@> zVR#boybT-}!`E5e%j@QouYjb|oqbi?jT6MzF*f8Ob<&)Ocpui+|72x-?>G(JpaILD z<5>si2wTg%`@n$z1;U)UzpIe^0>Yuu#gc7LJvuTwY{cOZvBanXx){fFP82_b04qNk zkxc8f0K9#ABJ{E%dnZ&833xQpI6K03c|bqn<=_4^>nyH`7zmGIa}M%8PA5{0!Bq3o zUr1|z^OB|+V=Nr)-psetN)Vd98cM{|0vMd2ujWeD^<Z$g->SSPaiNn#&J= z^zh+RnWGj5pZCsNinxAa*wOCncLUCqjxU$>3dq9q10zKP=$imjYu)xLra+iGd*ej5 zLHOlm*JS9yjvGhRiWuI>4K}F|ZBJjXVEdE#2Ev>*y<97=v)KulL6)+YRAbKgW}tSO zZSouKY`uN+5+}1VIt7u14F$25j^A8?)LR9`Qex!kM{W4=u7t|Sut~BI#zU~xXNn9ED7HJyh zJlxy)>{Bl=+WG8rFYRVvVQi#tpslp9XHh zJ&8TzgE~v+R^grHfI8xqIcaUWGb8sGWu2A(rD`j ziy08pU-_@sOO*k6CN^-Sdj00Dq0_XjP1f+Ct>wTA!G<^mLbhV>!bYdv*7~knLffpt z33v9v<<6L2J$nh|OWK{D^CzKczR@!;dOV$sFCyJG_xJst$$W0NJ0M;Cy>(UU*K2&^ z4S_AJ+kwsDsr~g@)7-6|EvPpiR4;kHx@)KKBfTWM!9i647Q=X0&gj;R<+zG95)AJQ zrUPHq)((oUwOW_ybvKQMYn$Yv?qU0zlj+ury z!1ev8-g)=7Y0n=0Uw3&1{8N${%`?q@Jsa)>_i^^OF<|@oMdhy+6NN8Y2yMt3mYzg?2Z;@78e zb6USi-G9)g7e7<3)x}}%w=eyNdDu8xzD-|k2(uZf}QsaL~&iE39>d6(Hc;w!<>dcNq-w9!# zGkZ46*|`n$p!=AXS!0=dh0fy3rTcqZfa$mrTXrJ&r~&D1n|@r#&Id}Kp}~9GRK5ue zy?I*|SmCjxjVC^5=#CJt{egVc!W2bS;r zT=N#*9M>1-Ztt;Vxxg#%i&K3YVG$c$u}?DAE|_@!oIdnn{MGx-9~w@Z{}=YVz7d%I zmuY6F7dQ_yy{438wd)W1Kvmu~@&RTNa0;`{d)L3sg1qoV>ihB9$M_0h!a`T+4CLkh zG~DzXamkhPK#z~Y_rkBdT+rSa73fW#E+Ks%>y3`-R@Fo2P#>p?{o!`D>yJIk z@FPcl4>kA-SwwCZ8;weM2VEshi!)+5Td@Kuh+kw|NS8J+X9)s^*h2nc;eV0 z*~wi|75~IC9;w7U_5Fq%@WMQrZ(Qn`P8Gx{c5oGDw#3`s^!OzBZ1P!rS#as;k=xO{ zGb>u71+XUPGW|2M6T)4wK$l2qF6<7vD``$?dW+?QxS9A4@X2!X9s&N~3}Rjvv@4=kL1(v3Z#wzZJblQMRZ1;GL#)IWD^>BdAA3@06G!}kvu-D0-|wuS^Ta&t zqz_pzE{fi!C&{+aPT6qN%4$DAT+p#{-!gAectex~8V~_OX8S%M$oIUWr zg$1BvXdEM1aJ0#Anl_7f0Dm}3xgVT4Sl&&1)`qJm-Zg<$?`|@5LhJ#I@1Ucmqo*(7 z>7_cm5QjbNfaieNqnG2N_NarcIOuxl8udVw1Fn6!ef9+9Lils_Vv$+Xo!D&R(o~erK0LJno=-O*olH0O z4o%|N|MX1(gosVY+%#mL>MvDa=Wb`6y$$SnuXOJg@P_qwEMoeNldkN&?Dpe3!Csuh z_UZE0B@B?Ur9XR1oN}R6JJG@Trr6bP{0ziS{PAo<*9@MeJl*4f*iXDk`F;;`4fT9U zheDZdAIPkmm*wAO7S9ahp*O_@>c>Tf2*yO5&j@Snavm8UhE`CGr4 z`_??45)H7|H9-X}OGVdtcLFR>z8m_L7AHP!P6KdUGw!YWcbVI4dkXx$gLVmZgt=ZE zHu`37n9KOBugEj5>MLPijTl9d$^6Zpbn6iu*?Rz|KAvSNS7dZ8U8wJS*8*Xkn$~Fs z&jo38QD4QS?7v0DPJa}b%ypccLlx{TZ#$MkIDJI+3A33Swhedv11JW!u^i0ZT%b36 z0)X8y@o!~oat-6Jkav*^GL!gs4}%kd{*CXk>vxj$3-msPPKd#WNX5N5q3QH=nr&T)OP)?PX+fbpm6NdO(zP+3KX-1UkJXJxF8jR zm9%p@f$msH_~M^!8o$0HiSR7g0NO(bOswafpFvu({t1I)^e&*1So`SU{YrV#uN&(! zXFp?-4;Ja{I*j=Uxg$N=NT=S7S2`opkX{fs#n8yZf0s6`qpx9`N$v2(k#|C!sZ)b?4;-9rJk9+~!XAkG zA{LW-MeSJm1PrjH1sZiy!#LP?a4cM-RXN(WOE#yG2A953(e((5fqxCRhZOZJ{VPtK z*C1|eq~|BGQ4{H`JMVDxd$FEB_p_A>hhLw8*i-WAAF@)WPWHbS1F6UtE<#SiMqS|c zH}rMkTcjDcWK=s70A&`ZKH$7L83zXG?d+g_ONFS1LF8C#`v@!4-X7;?uW3gW17Q zexNz=V-95|tV1aS0qNuVM`VA!jykR|)!!&}gLJXgGBoYLZv_YE!u)<3>XC0!G#YNy zza_n;+CzML#YuwGtmEz}##`ZckmS`j$fgZ+<~Qzwn?4C00wIywXYRnkXVHISvU zG*T31!vhX^C*?1UX9{x6S8lT+4btT=^rlD^+g_FDWBsXcc+ zR;BYLJJ4^4bPUuq9PU7F=d>a1N-eID zSL~B0p&IKi6zqdL?784nKkd#xutClH&TO4&1vcW&11^-yU8qkNN3MgKjZcx@L1(!u zVzxPQ4{O(J&y(3MKtwO%7C7n2%jr~P`y`O8o9W`AF5tt_jlD6~X==^yXZicjkPHp) z3L|)AHcoFOaw?&o+PnH*9JB5=i%5Aou1q`9ymm2YqkK{fp_5eX$M^Rd)@@-L^YunYs2*2Lj#1n_1Gta@htmkQuF=-u!Za? z{>cma<65QXt!ZCPPLT3MtGmw2)azEc%B*{};0X3#gKEv$i&D*L<5z&|GwAtr!R{gz zA5hu;9xH*Bi51PwA!HMyEfG`T|A}KP3{Sa6c&Q~T6KJ?;LbYjW)92&1))DMqLKZ^u zCe3!|Dq&PlflHst`wT?yE1>$um*Z!^zZ`_7;`*EHt0m5Nq1(^rv|j1hd^8rHyS8a} z7f`w)*RRbH(oz8URe+o zSh5{7zsa=j&3~ZUi6_~Mi&vQQ1uFQ$*;#_ZN_Y+Is<7c>wTp#fOi=Fp`#!`LnDbs7 zy|azLsT?l)`C|vG|Et(UOJ-M@pbgk@i3c*Rg&9d`u`f`7(uuRaS#3X+%2&~XoO2*1 z44B_!ecAzDba6+|v=!a9eW^kw=a)j}7)9*;+aX^%$He8e^;5naoI`y9Br^;T*5q!8 z;gfiLyE&5|i&bTu%e~|g!cW?G=+SXsY2X#um;2D^xfys-y^Uo9S%^Zx>{`Nd*au}d zI*d;MtsGIw>UnoUEKMFofgKMhEZA{gyFlSey5lz`xy)wB8J*DxyU^k*6zvPpF!DG^ zbVwO?3^v!tX`8KLJExPymCfY?mdQYYt30QQF(Nn{fnnII#JqbRTH`o4;Q>BE<~E27 zA`o;-e_Nh_XED+WjcwdXH-GDzc^-+U?n! zNCPDrI>ltHH+z+K6X!XxNzX}FO{ojtryvK<2{U^og( z3adq<$l2j3`To9l4%H;PN5O6Bp_L4?gF#;$(1~t0#cqR^@`#D(%P+pe4*>QsJ;@_y z)-FVLaMu2;O>+G^$@8l`uN=_9*{Pv9aB>OUu_s$DGKCHFq_J812#YSsBy0I66Q{U0 zxHYxtOnj7w^LKJ5yp60=nW;_5^Uu%(@I^|fn&T*6%N9HbyJOgR*2CJ(is}5_nt%^YaI>zr zI0s(%Q$Y*8H3l_M0?#QeI^%JX{Wl#SOxe6aP(s)p8iheca=p!6}!URW4HtE3DA^KoGCL!c=1aU0Et6Oxa18jN4rJ)oM@- z-*1@A>PO6ZQtx5BZmq$mmtB`EQo&m5mzEJFb%?Xf;mO9~l_CR_b)p`r5^!_^1=4Ms|Evv(Q4!YY*gbeG0awfdKV7$Yy9Lz|)uCoAxLDf_9QW0+Tl*J@G- z3LqM=zS!tqor*4W%egvC-Gn7=fnIIM*M(}wWf$JdDZ>a$BrMmvU(4jBgnYz7TqnA+ zj8pjDmguBkD4z0N@;D;0Uc52^)Mu@D2uP%p-s0guzYYLDzMPaq?3D~9&a)3L5eiiv zFAoY+HBe&}w-+xi!S<1s7-iE=bFI!g8n-JA2tL=64LHe;N-(GL?(&m-mt+Hm;~Zsp zmNKkc9_(VjD$)|6Tu|pu3>6km22$c3jSeugi*35-k3ltT(Pse zeev) z%u|TY-Ub#_Pjef)S_y%sPJ(?w{ZDfKHr&A$Z=)3$Xfx7$HvBc#=i=esuDoq+ z0(9OsrocC6`XxWIZ2euVtp~<~_HoD1%(uukT~Ic1Tt3od5eOW1vnIA}Gjy0m%xT98 z(|cyJ|Aqsz64yiz6#izC<$)FhrmMM)_B%&AqVoY#>~u_(5;oPGm@>EpmH@X-%se10 z{u@2*`5KGzpvA7b?l3$!CttH%JnI&Wj}?DjGO8~RFWL+Wc=2}wi_Hp~mAt`%FWzcz)5rFpb+uxT zTwI^w=WH_+1jNoxEf=4{vP?=(;k7z-%wMymO*6ZgeDwHgb#6N@=S(yejMqQVavrQC z&P1k9`RPP*yyR78%3$Mqzk_#E4Z=BRn@Md1*NfTHn6A!lPZMTf?9c8yzt`NtlV&I9%t}g? z)C<0>P_RETrhec8B2^TlegFZkVxD_7G56vt@><8F*iL+NIO4?i5#DL&za9SM&7M+& zR~)V7rs0!kNGc{4i@I`^|9&4H?{nHj6Mr=59??I<|J5W0GFe@X(svVv} zT#JgVRG-ebuKM1){nfsbt&1=?eESte9Lw4}P$M>PJ=gzr8fG&lqyP%qjp_=+AN)f@4^K;paiIx#lkdy( z(OG*ad|v8mWz3%8ke_E6M-e|54_bLkW`wDQxbcw6lvmFgnWH}l`RkTny>~bHzSMh8 zcF3@VCj`G<)o+SiKKw66*?Gp*mGfQW5g4{M-O3OCI`fbzXsVYs&wYuJN$oxf1CkyPdkty{hqs4yM8xy+40%ErG zxL$nNZTycWFOLEO+Pi-*!UCS}9v_wjeUq^%CEm6?~V8+v-16CXK}Z zjSIc=fA|ri;t1)d-xCfK=YC6x-A1f8y1y44iGCPyUGq=OUG<>125kOcPYCYU|&4RzH*q5 z;P1L6Q1>rdxhx(ClN>q_4~gbjS@|;sxy&=GU#(Nm^J&7jbgxMGCDr5yC<0tZQ@~i( zw>{~V`|q6tQtj=>hjxVy5V4e~6g)CS;Ir6oFyBtu` zs1>$#bVB{uR$w`BzQ>UYKj_#yO!1|Nqem~St@_6Jr5*ZrDI&eimg@SmBj;pM z(;>tb8ND_%BHKbxRxUU(XfgHvH}Qz8D7p6ht6CnlLI;=xy$a^JPOg<6y1y0n`ZsNS zYW>6fo5;o}@#uC_A$IIS>sKw&rQ7}y-LB#5m8Sa@QU18!l(TVL@j!5=ve-=gJeXxR z>_up5@Z4jFk!e~aPKHsBu(VcDSCt9V8z&z<-NWkP+r+e0_SYRNAdr34_o)Abi_0Fi z;n$bNJ^)g4m3mV-pw;i0|C`MgSvTIfgGupbxA-g9z0>}VPPGsDFln;KXW?l}=lLV| zai%lG84!$m;@BBgs_EJf;rA0yP)J40mEb>7Z{CxcF%hdTx=x-B9|Xld;Qbfw?(hDH z7&Hm=?B?$+Te)6&NYS^EJej!X&`$NcWTSW`(n&t>%fkkfO?Hn?-^L0H%_4yk4$iCz zd`yfUkK0uDo!SHJvIq_iNQ@wE8Y#Td*j<$NvBBNSPxa>R@5TNtJ zz0MNT_H{MXHtfQJr#Kn3irIVel|@i=*!*kh$C}*rd`Xq%v6`N(17S}>(;jGGU78kY z)3|cLYF1$y7Z+BmyXX6F1u;+a*3ON8l?6KfCN;hD+^g@o)^B}KL2u_PA8E}d&{&Iv z_Sj_*B}ng`l&i-SegqtwU(#+il1+q}QW?WXpThpkm>%JBw%qA{DY$6$tGDzc-c2Q= zJ925Ki`7Zv-7mhbQV@PH$tJtO^uA4Lwvk2Gf!++vzA25_w7_WF1i0xGE=ChATYb4< zZO`ZINYp8by+)7d=;D*{3cD_bQOOVQ$bY7<)4M!GzCM(wU$o2*N*qGNqtnMPtO5f$ zZ#J~Q9WEMuIQGPQn{OZ!ujAxB<^Q0MC7t4`*X2y4D(s9zPr)wZcCQyyKSD0Bs@I;f>yYkIq=`B)8fjULgQH<$`54B`Z)#Kn{$Df53~mGy~mi$ zlYgCg72daRJm7@jXr^EpZx{E2kfGaVP^mS04ydSYE5NHGHeu3W&1%cB$fkLs026b>E*at!-(iz1tP6 zPKb?L#*!C_8F6AWSIa(}P~I)mI28@<2zA+%@lhd?vEwfj4~4S4nR{E0Uw^TtHk{^a zp004^I%CJVinGV_q@(|Cdw3Zn`D-r0eG!N@H~b>H?7Z<$BVkVY?nj?vD)*k(|9uBj za^eTc|HTXmVi-1JqB8A@-LWGE@mFGSrI(osVFUT_UiiLUPAjRVVx!|`EB~r?6zrY2 z*Om8iPYn^X@J+BO`YK)P!|)-St&2*WgkM->7esI&%#bPu7_7qe&l!{ncmVf9SiXl8ZZRDTZFF#91C56_=+s}X+r@64X|XQ!389VH5iFLeGg z8i*3Cj4r_Ws-e$NA5B4eIp^U)e$RHGeU05A(kkHCJoVs*s0^{0(&dlnjemy>Bvtn9 zUF*-a(|YmhRGOc_bDJ|wL=C-jPtm~n&H3y;_`me$hE+ge_WuPm7|Z7m*9HsWb^bXV z-*RzMf7T68h-xt(^HYSwW2`Gud?#Kqk4}P^`uOWx;J)4#_Z4SuuP=N2H+WBN*+2ju zAwOo}`@tXgTCYg&0GBf#AYVQ{aR&07j34~cMjKv(6vK3kcfXt#m)Q;6nIATfqS!eP;h|KTfcLoBOYJ?yxc# z{CY0DFA#VL92YFOi6$gmZh>*+?Qpc70F;p2@8N{R-Os`K)X|5+h9R(P4$7Z!%o6>? zf9m&1Tn7xEMXWrSHKMjRjTPHT?7TRCfZ!_ez3HP=l zUy8HVME?)`zO>v}2EL9H1e!Mou1>K;oVdL0C*zt4Bj9wLu(Lq=|X@T0{?#pI;9^K7V{$ z7v!TE4L83L2o@w}PC>qz;Ny*YzZq_byux{a7V<-v9ZgQw56=Z>ofm%!zzrwN@K<&q zbFQy;%K{C^Np!$CxvSL^aWSvQ%7>#19KayA`w@kM}CKLL|xj6e9Zep_4gK^XF|fvi^vBYj*9uTxyj}m4>%<@l& z`zOYWewO{*DqFknU2yLHa)_1QGe|gC1Mxm>_a4N((_zg`JasmLpM_}0i0N-pE?KQ# z5f75aEXTZ&ckv3=7a;+&=CT>-WR z!#THo$fqvU?q4J@12~_sOrQxH1bd4=dJ^|;8`fzqyE1zloqh^YL*0e6(hD4%2OuxV z{1bm=4C1tAV;tXU(iroBYa+{(e5-!vv%-h*p9{+6UVhPdaJF#w+jaZF&!_m76_7h5CRw8aE zFS}YzAWV>G@&frpdi14k3r2kp$yI+VE&CzRuY;X;hgb-lFdO4G(&!hoyR7N2DDQ3m z9X^9+?Smj~JM1%@&y7QVe~{eX5qa#hPNRIyYu1J64-p@OJGnr%=?&XY`|p7JKA%m3 zLqpuYL5MHztxeF6isuz$y^+*y2-f|VYuys)k3J-hK8X1$_EskLBhuCcpSv1T8@w7! z#kiIY5&I=x;WIE!3U)trwkdoI$Ag1}w`W4+tH;P^V<*0~Z}D*~f4FQC`x}uyGcitF z^LHU{baJ|j`5>t1H?Pf;mOT*u0q@)d-TuZu`-O0OLLB3oI6h{KpgWu?1J{V zpQj<1VWJRUH8DTL|7G`K%V7<0tSV@G^#piwe9oLsd3z!1vjy7Mz3zwK4SK{wqTUy* zTd5uh%Ctg0mZo!Xe?mu@B{(c86}JocdOBiV?A3FLP-g2u(dv)LQB zUNc7gztzMiz5UA~@EP9%!F27CU3c5pVeZPD|%7KGS{b^WQ?VtrEh z!Eo5P9UcO&sgM1Pn^7+4f4Qk2Fh9pUNyk3Z#Xo(zK3ty#1*hYYCqzDLhI}-)!~pB- zc<<{c*EueMe@p$JKJET%353izio7qb{q${j2iig0fOnWz3qSsic{$ow@#t4Z7Tzl#dfAu^EawbH*ezGkdGA>O({*pM{0sSMS zw#gvVO@BkK=JJa%&-Ov0=ijA;Gx*q@X(|vrA#d#)e`B+t6GUG>jPV)x`0&ZxHE%)I zuJha%W*xv$_5kgYFk~a<%jnLly!SbEgBbTaVm$U9gMAIz`55GF@sBJ7cW(|k-`__5 z?{Ur*B!I(HVNv>hP0-D(K#bO!6{tc$JRoz(LN|27BE-iITPeH=Tq zIow{be{tKXVLw7)LOtxy$i9RiUKaek7;&|DTpape@H``w*SF}1P~NQtuN(c5Kl=0w z#lBZik00B=EIbIs2ixy{zG4xC=_F#EpD?F*XJMDiP`qa>^0|aAamZJqZ_dN~ac;mq z^b3bY;*Xsb{P7X}FWMqZT<>&slq2>{|I!93e}rqfBF_yliHH>d4sM<4(#~MB2jqUf zj(Nptr2+Ech+X}#{yn>T4d&0YHqUZ|f(1PP`GS2Ocg@XMPu<;i`u@j_22kLkjrD%) z%J#_5Jg4e!6$%hI^SjvBjXHZvNawR4>QJ{pflxp|tx2f2$W`mkOgv!>{$E7@F7m2Z zf5qT;7l^5=_h;y_1PIJCMBW%MvkKbP@w52jUeQ-i8l8S31DWBHMV1Tn;7pZNfkw6l zmw{Cl9j83VEX8}$#b_Y~p_u4DZfJuF**t(Fj{VTJv~#HnIm z%pvTv;P`36I*qVDQ}FQs_E|%|yX?4Rf2k#}7>1wCf6lY@T*eAe@l? zU@P{sqA&Pkf6IISQ`C2qy;Gg_Rfj@`FZs8zG%0&Cr{jxf2zj9 z@ns#cUn;w@8vXwK(`v}CGMe7N{BbIAx!AXkv=q{27l?0D_`||lS&$mi+OnvwHTa#k zLOVog;ji4m%{|keMEFdH0PPUuop~V}ez~}+9(Z}~LLPoL4}TR8(vRt3U+w&-)7bxw zjQ$z(bbQA#i0ctsq7kn{_n$+af0z7rC&puFGZXadJHvil5bz=bV&mtEeT~nKnVFg+ zAZ?;pSBK3M`+PA@CeLde2!_z%zKC;ITP#372<&Tv`;H!5f^nagc@6D(_;Ekr42Ml8u}jdf7O+C`pDxP z4m)Aqcb%M3C-;5^Wct1m>)Rfi5m(dlE@PZ{d-Pm&f6*oIU9qQo=Q`^lzH?*bp=p~s z3Tb6BgzgE#dOZ2n6QR5r1y0LF|IUBWOn?DPIB6}`{ow=eAn&|$qhIYNTlK-oCmQ|X zuvd+!uG>z5`<){IuHX34g+!1J7Rqz>EFuap~Bm|_6#&eWY zlLJvdZi9AXzP{L63-iRy+v8CWj~+j{_xP43Ty6FkarE4aV${d+$$Rs6KoH34IkvRz zl?e%Ju3=o=n6n@Ksc2p(@_@`?3o(BdOuU3~A6T>n>-ePZxu`e)f8S>webZ}+pqH@U zgg}J2XKxSv8G0N7s;n7cv#AY){yPER_ZeV_eVDkIyVV{I{}qBYhaY*E=K~4nzsLAI zddn2`oX|+*uX%quA#cB3uyN_D_8lSmVokJ9(ff9o_oIhSMVxV|+Xl}c&Km*t*JJ!s zv7ekjAO`!P$qqLVfBy;(zDC{|_uwY3m%Tq^fnM7!aB7s;_bRLsE6}KUaJ}#|*12g( z`zPoGy@%MvVqI0dt3Uch=(FY+ckyp>Fi!^jSO@c8WH%%1%LXUR5YLyg;uC~I65>wc zuLMHkxodbH;nU6S;rh(aAlvl->jIB$A?S~RqYH#>tcQ@ue;SCtkuwitzILrd^0>*MykqYp{+iIx;~p zUo%MBu+2#*fA}GB=L^K?jEOr1`m+t3r*}Xec6|Sc9+{en;$c2F)6Y`71hT6WS}xzcc!guh~5GzxYD2-}~3}o=eU-BtqnlBDDKi zjVgG3f7IUeHC+bRfx~;Z{B_Q>7^2(~1bVy)oPT_-y)5=79AA|`@MQf6NSwanO|Qid zAnuyzZ=wITK>RLf_z>&jpqp{nFU?pt6Z2Ty-W5W*w+u>p-^FtmpUZtQzZTR^!~B)8 zf8l|kka+MKvhL2Sy`P|PJO0`$Bsjg;_g5o(e<-Xqq*;LdW4Lq80P8l_3F3K*$AH6P z-_{C$eI25H8;0kJw{qeP1p)}Z`=_8>*$Z-z4_%#A1M4F9GhtYl$dVS}xkpUNk9ZF1 zw{14!fJ=l6`tOO&)3EM3+rds>Vj4?_5b_;eghj|-}P#OcrGJbRvr7@cP`aM|L}3k zz&=FEnwQnXs25V)gJj`#DERh7YTd68~Iyu z`wy5WgOAFv@8R!|hV@_St5t}vxmm3ce;-a~h(GR`8CJ)mOHK~RZpC8V>oaaHoGU^qn=!uSqyW+ug;!m8`3{Ui$cFIvX1thP=D`YOY@RGeou%`-}lK z#q-&CudP^@x%S+IefG=UZlit^7Pw;my|pkbYuwFWA+p~H>I&ki4EJUVNZHuCDQQ+2U#SQK&*&zCMXoxDLX zm@xl8n5QBp|A0I&rR@;pBT=2JV*e;7&>HvQG2l6#GsO4+@+Mi&C_HaZ+cAFe;woLi z#pX5Ew?4~*@EqjyoAH9!y&&#z8$9KT7isv+;ySE}ge~sMN+-Le^ zQ@FBu5%!Z(YCIL|(kV-^ek)k_26y-(q}aCGg}f0*ZEF8qRZP~p@acy1q8#}e&vvA%eIlKa~#!SUiDu90{@ zgHKw2%)dn`UB|V&UK1R9?nOJ?+&<6nZMP=iu45w5;^vS#rwR7?V&4ZKZhN*%Lw*vc zCEh2J@uDl@M~v1w?1x4E))edZm@V(H&+F!0N@H3IJlqT8G;Y&Cf8?cwKb=Rv%RXg@ zdiR(0`e}G412`L`h39Rtt;6v?lc=f#F`wqS{Em2(?=u;3`-<^$vF`OsKz=M6bp+$M zIKc~fV)~lDuzyl0yS7qo-+;rUQcZhXM#`C_b@w*VmFQhtPU*_WT0OW)D z)h4f**S{A;UaY$1(3hhS(Rdf;pW8oeb!@)u4g^ItL4S$5F#zl6xVi^$Uk@+c-an(r zADlfqVZS`K$$RXh2Tm93TxZ?&*H;>RfcT=v7#9Vf+|dsLe?G6lK4I+6KM|k9jC8S| zTVOjG&j(Zb)Uto%w-8)(S9-tv$qz2~@##o9y9LAJxrj z7CxUl`~m$p%3j!p?-xibZh(Dm*)_3GpFg4(-Y1k?dp`2*Eb}a^{}Np$UGdsH3H)!& z$GA$m9%c(E8z6DnAJ`X@Jv)Z@Di?WOOcfB(saT#HpgxKDs97B_J}LGK)~ zU+Xs*e-#~qbY#fuBI}ydI|D0uLqrvwCH&p z68qG&e`x|^AfTJO0F!OuvcDnbgTl#v*!Q}+st4wC-{snfPr;EpusT|UckH%{QMV;!_fCtvF?fSX;ToEF&*N^b-@1L)6o}WW`ssVhELY^ zo$uN~g7t0e=f-u9!a7psoQL_twfPSM&6x=)e|jQ*#^?6N`yWDwZI2g#2HZ#fg?Lxe zG!*&VgF%C^Zt+gAS~lbTCAbi8klEYl3>=P##`+-O*(|hMWLz=!`2szABfmSoHwWv# z{29-&kCv{}3h(o9m@o3l8~#fXf3H7U)YtBIWAHKUe!gw-2?!o8-iHu3X%^ZuuIXFM ze{1)q7h%6L`cXdKC*~tFLjAcr{)qbvu@moa3v-Xax+%tNHOAxZ5l+b4V;+e0L2hs) z_N!0Xi1*3KGQ@ar4{k7YYx3`K{>15_56-uPlp#H_p7i~t9`dQwb6JQ}u?z55;=y%E z5!%bAdL67&vYzcge&Ri|4dT13Pj<&Xf9nQ7_Uk8Nf4nH<+UcEz;Fz}<`?)1uME)!D zoQU^pT;_(m-DPuv^*e=e@O zJ`nel8I^-_x|kW^xyg+UZdfN~{@V`kYso$E2lg34?uhrngtmErdiJ@q2+uWrg3R$g zpS)PHkC8rpJ@zrCLQD5XmzxTO?=jIu;`_{-iaTvln`XPP>Xo=@ScUDat z>-};QBu=}Cd97$gUBnOXgN1nie@>#OC-%8Q_g6<8jT-w8-oKG`|CzJXjTR8o(-HfY z2_8q#k7Jv?eZTBk0>ll=MjVLoA1u(uf#7WT2J778>n38JIAa};pWj_GxwKvq@BFMv zcYfAncYap2Szt?l+S{(DKj$o4#Qywl?!rY&=h@jVr&~qsm#tW0Ye%o_e{2^lT0x)H zoV(D*ZUOyU{_3S`)hoS|b(`?NFJIorN!)!}d!Ef|o4)hyY?j%IBWmy?G{ieo%k6-^ zMxf2m4J&Q!R@*MO7X-1kTV%h)dfAG3wo9#-*(@T#YAsrBzsAmH`CQxoP4vH;U+t_H zEuX(an6XKzFx>QIE>&kef4qBEqYCUA%fznmTHKe$He9;+hU_o!X!4EC#S?aEKhf6MYi56%xr)zua( zT|-)~Rq9GMbA`#+P07l(zDjN*h5M9$`X4tXpXaM~P|kU4vq5!AUEkhz_0mQ1o3-n# zT)JYl^+MZ43l`E_wehWWi{`CfNQ0K!thKhYnYYMhISp#aURtlVnS*;_@7JBbXsIBC zwXL1q3JP1L_OYI4CTl;JMs`#>a_QV<^Vq-!a_yA6zW)E-#=)X7KmR}PFid*Ny9WSS C5@2}% delta 56216 zcmX7vc|a3a_xI~o+EPjTSfR3|)+#LusiGo6l3I#XsirP~tf>zoB1%ML30X!(MP*Yd zLq=bvBQ48Et*y+bR-Cet+>92x+YAoEPgSgXkl0L#oRqkx_ zp&`NB@gE5HF1R-3G(%>_tz%%4 zsJ6g8VOVq~NsXDpD>`k!`b5!cdLAw~Nw_+lhw}hs6G5CKf=-(RI(QvYLV%$V_6xOV zJFpCgf1+DlpZD1q9g1qbkhMt&D$@&G<3k(BMl6kVKU8@Ru?*j6AYct0w21JMbXc?;O?*3GltAf*6xczn6^~Zlrl!7X&wM(~J$Ne(OVV^ksa&}T9t>nE zMul|ol%a!M0X(58uubtYfj_ndIVJosuX3qYwQbECCLD^*wgUFu_#tWA* zbmPa4Ja-0mu-%g$3}V`9CpmO5MiJo}T6NJd<>Q`^P{E~~NDyNR? z0HKbS6X_=F@qY3zU#Zgx<}OqsTvQ-Rif)#1sY10Y!@Qqg(> zY!1;uoa%DzDn>XB>o?AHh=h!2?!qkYmyNO?d(h`vGM$@Itj9m$C2J!>cLe?eSpabp zaM83+C}M{n`F&qTOijqc401_<8I zUMBtq#uHFs2d&Z2bG@jc>hKM58zF10Tic(hEGK(Pazw8C4PQ<9>0VslLr!G^JbK)@ z_u>mI&GU#WP(BTE&H@++m&je_%g^l{x9ui0{-ky$QCt(a`oM1Pj)#bZps z($T}X0cCfW!j}`a=$a$GH$yLRxHps55#fvXh@Yy2DD&b50@T;(b0%y1nh`{Jw0 z3Vz-gaVk+bVO7p6(Zw!8Lwybzq zKz_i8dDv_QBx2~#ovomk_>W#SmJz1nx{F6;zM9w(e6W&HVmn2L>K9SdbW-geR2Yy+ zfID~Ly1TNVC+IL5!rf4%>>o3jqPp0O&<6Rj5lvYCB3yvxz#VL1Y#Bxw3&z#+4^*p*GKdL6|wWac;3u{%@oFeU-B9 z&!$R<I*tNm|)Ayf`Eie86{^1U>d$CXYVDKju=v?$ZB7BT81piGNB*+F7X%WAnar>JQp zdZj*Wvb@pIy~=nIGrH5&uOKsAloB_-xtodI+E>N57_kcBRD!;uJ8?pdmyR9I0J5?Ie<|H0t$vy5 zzd7emks3?5Ho8d!bRa%ITyu3G<{r6pwaE)e?PHOb9#`_6oBC2e0xp(xzoxjM%IHS_ zY`UkYvn?PSR1vsA*X~VhR@k^3_zM(Y&6R53(%0^pGD!!}ZAw_F_vDvF0T~@(ucu$iYRa0onJ28^rge#@^els4NT%=n`U;jou8}{-J4*LyDNOm`_6gzWeZc68@4z5jd*4X8K&IsN)8vLS?d3n zdPe9Y&1AYRh+;UW($g<{*Dj}`uncZsd`nKPRcBj}m9gS5qICH|xadu|6ni!l=}gSI z3hrqRR~Z}Uj4#D0&fVlwOHSl${&ptjcC7GGrwtA=`!tw zpmdc|2?c__^Rq9n`4<77ar<$;r~n2tG+rMkn|}%AWZQU({YN~V5`|T;Q71Gdn^M{} zTbWp10^_t`f)sv6UrwYc_&1-)4oLaZD`2Rd~Bzf}F>=2Vq6S&VZ!)GfRft&(HxMI9t<~56$ zz>SdVSIAc(%XvT;K7TaIRB%+#XqacB({59}vq)zw;(QOKu5~odIGK_JLP>P`3)dGz zRXuX(xXN3WGEMO%yHJ5+3fvpw$$5W1ZIpV(_6UZ$h@EggunQLxZA>`@{ z{*I(#zewcWkH;1kEMqgJ?;K`tB1AW3zDQ$L7tmWV*i8(5sP+FRy8^dFs<7gJLenJ1 zpO*6SeThu_o&2QyV|MVyO9K3#cG_)5n^OtfL;+Td>(QNIAs%R{e*DKJn8!klOJ|tf za|c1{KFt^U*`S5(f=!8OLIusY`DXPowB+8&Y>GS|KSNq;zc>tjN^%S^8)dM-A#FYo zcLDXS>-?`3X7YVZ)+w}%w%oIUzgL{szxPd?IBMd=?vS2t*PHOfTWHzm+%$7?f1XbK zAIYw*_C$00hLb%hnnQ~(LRRU2yO(9DYN_qCp54&5R?Ug*dU;`sV7JzV#%0`sCH_o% zV7!u?@GaK;#(A9>)}?6Tz9+%{6=)nf$PFsG4I}%-J^;<_0QCKd(aXZGmAw0fX>D2 zipzgx)&fIPvM8H(e$MvN)gVqAun)63HY0(eOE{!iOSP7&Io`Cz;~gw%5e5pHhtQ%O ze7ctLlIL=2A?XNRR92C*z=|xgX|UkEvWqayZ=WB&X$AFg9B2I}q};WAGlD}ogaI19 zhUgoq^~Es5P=ki^hSRH_5nVL-mc!W%#w+xbjx9@^+PO2!$Wep{zrb7Dvv?b@pR1am zc$E>>^qV*rl#2(Wj}dmw|H9^)Yp+kAMtvVqj=p_zBFMfU(Rsr7y{>3FC;oU>M?Si< zcG~*JLh~4Pbz!GIU-mvxvQ_wW%}F#j%)@4qLn)CR?c~{-(OVRe2keEZA4Ffwyc0aYbRId4SZIDh8KNo3pC4*i zRnnjDmMEB}{wndeiS8WsDGYj-wCS6~4T$;s8nomDv6-eIx@g@)ftOG47fE)E7j}u5 z%jmg3v|qnrn_RAt=Uri&c}Nn1oo52L-h`QAyJztiF>o(q8e*<-!rq*?Z}mOuE%Vvg z=BwUE!J29j<>+*bb#`8wOF4fG?iWdVcj!pOZl*GLn3f*Dl(5}<1@^~f0^Rk75Z|?% zg}(SQEO6-<{!t8Yx|Co!24g|DyGU`_GQl@g7pjUmZg2Ml!|IJ~&eEu~M(d@)=SHyNE+u{mCHW-Jo zO4d8z^kgNre|LuQ)8Nh%$WQHCVl5|FiSHU-Dc_)y5+h3!Ix2!R95-t`OjxaB5a7JvZ|_DsME2>KYVXN{#=0 z!fcx>2JNBvy^CHG^c0X49AAh#6UW-NYis6|L*0fAU>f4|g1#8FstL+E4(I>V{E7>> z<2GVyeca}tuO$1JPp>;es6__!rjdX1h_^Ox=CShB0`Qi)lv3<*o%rLD#o-~;37~AN z*-i2carbfcK9R8omL%Dl?kiTq&TrRLC~I?2(Zd9QcPac6&PT z4{FEJn_$^X3Ch0tvuuw|Gm4LYyi2y1m=lLEUG*^wTNX60*bN(aX|Cr5#GTZ3PJZFl zla5HdMIPCONG1Q;7q;-?74u}%F3454H|qyxZLF7`j_E! z-$i@dYk`7GNb;YN$dL!sOB8ZB=R`P_UrAqUc7RG=8GWQ4d|M>?w{WW2tLEdR?3nbP zh~sYjdc6N+ge^khwOZPfQrYrzdAPRH3D4^m_~vRZEn#0lROML&eEUo>DIdQ-k{&_) zj=lLbrjpm|P8Op_yKxVc zxe3`2(=vP+oHE1rJAivnm7X0o=(8KK4 z0kNlP#Y7c8uD?Ku*RG4?$k*b1>sHcx1YPyTklMUEj!y^;bmgC$c{n zQG!jF#dPHxe*^};nJrvTcFaZ7N;tbEE?{k1*e%3KNwCww!Bv*)0leG`) zI1l{Nd6yvjCNY4z$vzjC%P-3BYu-8;{*HDw=?reZh58E3wqx3|w`6)m^m$O^sV+j(Hzc=1mn&QwIXZd+d}aGUvVH~-o;beHaHyv1B>a^zKZQZe*I>D#&U zG-lrLp+49L5a1_^5@|}3Hg%grS937USSoM)Pw_N4r&JE9E4rFH}ziIwg zeGB&yr@IoU+X-F_{!wNQek~eAANM$exh$Tyr_09t+^rR9->Rwv~_Ke=EW1swwVk%WZ+0iGfAeo4jK_h)OW zBLT*mCqegHxR`iaR0h1nR>V?M^I#6OJ+XhN_d)ll@NGr>#v|SfK9d#$y6yq4;n6Z4 z{U}b}Abi#4)3jgoI-f1~2@)LXpKhXAD@?V?TT%;eKQ#1^hb;OQAEaJIaV?wrG&slSppc$)u{jap@DO*Is30k)JF*9gfMO(H_L(L#gr7omu6Uf3Eu} z%V2rgW~a6(EgoMn)W{JM%1R>aV;2~64S(~$EWtj@O146N@zU;^3)YDpMN7@O`rF2R-Nvkbo8Q(uCuCXL-e32snr3@)9q@1cItO;g6D;*XJTt<=cH)Ha zkg|J&v1VwW{bOOyniK!>yN0RW?q;)R{CN`XZ|~d$nii?BjOk3%{X^}Q(IN_sMUf_I z;=Ko&dm-!V$vZ)Co=qerXZYDyLF|e)(Rgu|)miAD3nm*Tn(?)JX*MGy;OkMnEpQN|`Tqn|n zz8{*LV)RpD{-SLdL@)NlFM$HLh=qYUd_d=<%zaC_$6Y=59)Ef0p+5pqTFORv>vlzY_arIUn1(w@ZN30f{|!GrlNnk{@HUZhDM zhkD$PcO0TdlM;U5moDMlV8x}05mRpbSv+F<>><@msA#7R7d;$RMY5dazEI{LGc;v<*U)ew9`!6{$^&tAdPjBsOTbRj8WFg} zmNlkPA`HhmU5U|!+JCx+b$x};M&sqN#N87`c2C##DWVoK_X0h@M3x2xRR(kJ&|;Q- zZh5c5yGOotkYx|id1rGCQOmP(^qS%NM2eI9_W2O1`8@t}Xpp+7IhJ)C*XPscZLni` zWMT|HMx=PRyw9w7Yc$Y@LpZ-q>Wl3}4zbxDb5rn0m7pcr&z{^FAhSQc04=y3U$D8* zyjOf=^9T2dBIqNr^PTRx|74Nfc-N3<-uq3Dn!M0ZOnM^dpP|UE>Ry(LWlb9*X>xtR zYsSY}q|sa-u{F9g(uLg;2mcWo=8|TPb=x2MIN;lYRMw{ea&wQA2n zYr#(ZGuw*A9k{a?f(QT4Z3!m{)p40@sb}^JnAnIy=h`;9KH%L|nb^QY?XsunURUKc zf03&kXdVFu$exL5MPUQv(!qw6##Mja3xjZBvNCaxd*2wZDshi_!T@PvnP(kwNgocR zuClzOR~12LPo@{B!dW&Ybf3Pm3G!$3QPUFE!*cbdX?4C&a#@u?bBk@bN#` zkPyO0q;g(fjDf4;Zv#{16f1Q_Nz69#b084^HzTtj_Ds2nO zq2&~$jN*J-YOvas_Ge(FC?`8COu8)y2U&)2UKqODJ}6U}JTa-6w{~Tb@p{VoGQ+v0 zB^o(#8+{h*OJ{V3sK~*-p?h|-IJGcNy0L^`C%L4+a?VN_VSPz3HizlOvPlA+p|{S= zF37}b9=y!ELnW}; z+7(?TWLacvf8x?zF*FtvD9RzByHhK=8#@CyxBw!nul?oPWna?ImfS|=hsKpB z;eyBjwQy9Gsx<9(@?Jug9rO|McpNsHYvRb+JQE2TJ$cTLyBQiS7jrsb-CfDPx^hPv z$B7jLhHG#pm^{?5$6iAWIFxGQcau(~nUs+&<%Td8)~{lZJJv)UZvZtj2p>TSerGQew+9#zm;ho#sD=46A}xcqQn*6A=-w=;9J zh(-x9Zci+&Gttd7(f@E$L(Lvq*Fs`?|N=&f>6+ynM7PUd&@G29Xz5qU3Ex8^C zDp_OksjG$If(XF(aL!%#jks}M6`y_>NNu~?g7xkDvNnj*yl2vsi3d$!UL^3H*N$n) zt=O~hvJ!e{+av<-Di8V_FbOsrlhTQegCo93@MUhZj<}+;)cej>q;f6wEJd?|JT0qP zObj!Xmk=eX6so#TUOD6mndl={T^5B>+4NNb{PGgSXiG--@&NQqu-zk2!r93VlmtO6 zrHy&Q6N*u(un63U%?**_ztl(*P z8JCQe5>89BFo#~+#~M?5ibhR!8JfDxc+CxFcm(J4Rf1lc#6_q|TfNCN{DIg0rvum};k_oB?h0WHO*fU%g zbe5ZbmGPs&1lyy~&JQs{#xk*%i}*Q{M*G8Jx?44UDqG-7P26ug(LiPntfrnaLf;D5 zzd`0ZW_M8^V1^<6#~Y#K$Uqt}OHuJDvM&rk>RPfCIJgW-7vo#VJvOrO+q`8sf4?-U zmrv8oC)Un1RA_K*80Le+vgsgi$$cdmuHV0(3={L<IOl*(Qse0REt~8TwU^Jh!t$;z$*u`aX_3hAhOn)lE7EthY1bMbRlax?$Nh6(W3fbt&^EQ1FSCQ3Ww7z^%~b7$0^NlCv~d^vUk zS^t9bEdKqATQQ(!Q3ZG^1z(w_2qY9+g2L6|#&=Y%I@8L<(MWd{t9LR~xAae#ZPvAmz_m-wz#2!!vQ`?ql*9^_)#Y4vNCc{l z7o)K{TPMe)(v#6mXxE#pa}e@0{D3svF2MM1NXfQ>LrgPq|2y4dZKVpe@&{e;yJl** zX~+CW)fF)7%@7(&rLv z62P~R4!y5GQHSfoNRH_YuGZ|r=tNM}Ewvj=7-y=QcRI{u&6MVVgHsWkfh+H^@U#uJ zEA{J)m#zUF%x|lbLn4^>R-UYDs4io!%yOzyE1PVzWoCj)VN-L-_s|2kIVGwImp)Uw zBSlNJXVO*Yy)!x@2C!`EaYE78#Y;fzhx#Uo{l}D1@+Bxqs+S;Q^LN>YLAN7p#6Jb; z+@R^l1|OXMQB)Z4M%B3%hv*x9>u@@Azw}ZsR$@G7f>@0GC?{xW(53-nEgQY<`VH-p z$atjrdcmhFtQYF}N6olSLLguNrjwwtDm2l4gKZVulP8~O<(X4u^}hj`cj1gn`GpP~ z`)Sd3q+~?QN!mh=YWZk;@jUvKlxqmkio+n*-&v8y1M14V6kTnn?$;WdG1vnukZOo5 zV>bek@V!)_6Uw&V)rVCWh9Zb<$bZP7N2HNQxN3%=sftqEuQhuNF) zF+Ik2&05V^q8IS7mFzbBt}up5QGeONA+S?MBW9p}Hu>0U;fvT)omab|F|Lh;D%DRFSnWrGHLLi2V86$`AWw;Shky))VLC2yxoKrOi?cI^-X zV{`yo^yT*q-`ZfJK7Me+R&-a_qO7?kYc;JY8E^}A$|_5La0Lv_-!r)v?qJPMS)o@d z`M~cjQ|`2@A7nLQOvxfS+DI5M{5I^pybgrlw`rVy)Iw8+nV(Ds^U<2#i9YC4J>!Un zDQ`TIM4x_K_7r#uwdozWe(WDiOEjKoHAk`6KbBIC94e13O=}mpb=^b{R13{kKzpRX zJ{?2HzUK`{Z&t2dnDMwx9N&H@)d1X^8!>fp+Bb0-9)~L!uME~UaCZIa-MqSD+NUeO zOw_KlRDuK2l}EG_?y>KpqdN~&*(Iex+Pf3XyT!uI?$0@}rWbMC;r<;b65n8h;-j>i zoQ!A%p}TLi`5Eu%Ag_HlKd79TxenaV5^3J-;FLD7+wAvE1FMgF^JF7g0Opq9ui*Mt zwkOz%kD6y+Knk+swnYJ%HL2J2H7*2cS^8^F_LsN!Jg}I$6WF1#)VHtj;29a_1Np zhuXou@){bWiR6}3`C{OfeyUQl(aHVt&!CIq*Uk}ZT`KP{a_^J1hDb({$CcTJ=lVqj zydD@xW?a#SmtnKkF2BnNmUH-da{q(Nx_^+*V#c=X_CxKDuqSlBP#`%5m)~P%S1)F) z&>1vq;zZiyufPI&{~AA#uf^{;$<=PIu#${nQx`B_Y64P$&eB+WKs>-snaSj)Y<6!L zrzv1a^g;MrK}uS7R0EC0b%>Js^X*42HQ_G-7K^jHLYpzbuKDmeg;sO3V9JJm9^qt- zwdrC+kDqq}YdN$SvpyX`WTvm?dN@$i)%|15EB5)DL~p(LxvOUIYoS9`RyOg3-SjsO ztbqhzgO0SHo1S==w*wIfdGZd;n4nhx#^sX{7h@YJMfAUD{;3yfew3*dTFP! zU*f%Qmn2D{v|A(r`MlYFkpA;uu1X2^8UP)od82$MVdD|W_!|w*<)p@oI_|Yx<73Ub z)Kv;MQS#wlSI%_*TNpvL`YT4Yw!N+IYC$(4BxU9JDCv?>pF2_UhSCNI3mBV4v^!hK z;i(zBxc!{B=Fgy`6Z}G`^r%N<&D3H2q9B>qbZ!{9ER9?)zSn$%R7M&&|@TPi1YVSMLV*##bP=0iyKOsmQU-<%d>g^tORt(H_Tlw;7I9 zsK%fIX>p}&y2>U{5SqHME`ka4pCkQzI{Kh!Sw8tZYAzuzNx}^90db4v{{RoLS&>V>RyjbxNQdb*+?}3RvVPtL6d$Pf)oCuTPkqqeVn5 z3CyXK8gik?a7%nfIoH;YkNa0)mA=CQYAl0ImD<^`F86ZIHB8@eKgj!De8$7IT(O-{ z_QE@l7jAuDh0sokSrz=T_?4_-qm%yL+J&GsXQsngpz5OWUIFKh%YW#4Jjz0aBg&@TAMxDkc+b%f3M#*5 zr^x%y8Fz}FqJ3$ZQ28@&msbgSkoAp=C?5>UVu^K2ngw`-^4&jaNgR3)xMpwGcP7b{7RB7yUe1^pDW~Gj9`XcK$Gicv{m{$8%+A<94Q+@AtapZ$ z4zobs1{?h9V3xbI<=X-Uu`L4RmFzCX{?M!~M=dkHK zo&s>URmcTFF*R~k8|r$~DD&G~hj9W=LRd4c7y30fx(%zf@HGd^7T7^Q1Yd+? z$zslDzu2K>C1wKYN&@zKn7j-N7(98MbcLAE5j*rkoUdF_cA|U;SAV3D`stA(eh$c# zE(*xJ{?rq0Z(rM5FNs}2Ty~6TE1whwjU3V42q33qtkdTigk!OToA^IeAadCww_WR? zzw%#p@V;gVTj1{z)@h|#R-LP?X)6}i&6`hH` zhIui|QfZ5^2mit-wJaVhYFY7uSf0bQJw&s<>Yp*3f<(eqrftGxS@7F%-d&V5S^8nD=rA};e(u_T6assctf>+8D>Vt@b_hI{I=aM#e*id@5+%Rqjst&Nz zp=qEhv&Vmf3XZgo7vGNmP+~CQ^+iU=XRDu}N|yzd%Hz8Y^QsSw0C-f&e*KF|RS4nQ zuN87rThP1H$UTZPxSqA>(LJX%&mlt?QRD8LjddJnc?%8pe%=e{1-mDoQPzP>Rm-zk zwM^iU<*7Qlz3CqBPvQ)J&F3&{u%!afMPio4{FA&^@dx#05o1(`c}TnrSttcrP>@PX z9Mq6N06wZmz0s*-dReRjI@(c=d_$~X5%Z6-$)+1Mt>R;PJ4ttz)cssaGVgn^Qh)uO zze072mI*UALiVa-3Uk^wy7&-T)-~!kS_?8}R9xunAXCK@3T9M*)Ib_mD+*tFqc4M& zaNC{;XfFm{OB&KTH8OQ4RO>*}egLCwEKkMJZXAY@LA~l!)+FW&5cyN0tsX@MGoz-& zGYOI)f%s;oN}xKH%L!l7zZD5Gn;_{cs*j!Cf=v6D_fmD=LOGB`PVH*NJmiMT6CN>S z7Yu>d=Yg4Ep;WI-<-taa4Hk1<2xF~*+g3uXS=P*rNnxX^8P#jvEn8wUn5;2e(w{4a za=P^vbFx+(+7uT2wD(<8KoafssC?cnE=o=M7Ig4(cG49*kE;cOL6{9aj%~WP1x!8! zrI?OL*&FKVZ10iK043oOZJ5W31IVb$ymioPo=ehc`Gj|z!4fLZ>+@?~;~%79tdVd9 ziKit^Ee0r5uNHITOwrVmr{)J+aRAwjcp5O1NiXP8D}-%kU^1_eoVvzg^;Wp4N&Cp% zYoaVi0M3AGUiEDN{g|SZ;4HgTeS{{pJK&|M8fNs-QeP5Q6Fer6bBLhIp zvjS-h5>&q>!?W@F`ZWzpK@loWO*7yJm_Y~ViuO<%jG#~EWl44Ql2+E;43m5czc->+ ziON@ls#hOtv7ke5sOfP`N$@#U!oR3!p)RJdSTTt^Y&BEJ#_UR2746;!FXUxCE3S@K z1GK+M@5Nb1#jXDvMcty&p3-7GMahKwL+V#E(qkIC9+iVmbt=f{D0ec}XFcTnUo;5Ul>%>t_$@J* zTxuZYBx50DB(Ko;mL*V`Lh}l;SO`ag$#~*EvYAlwK~0+CX#Ove2Ta~$R}&-&)#y+# zvrBKUrvJ|f2Nk0NB7SFON{CmczyLL5Go=D(#T9@KqWq7ATEgIhsL+rAqE_)WsRpWC zSBF_{t|bfmWW>`;z-eiqLKRaaoKaoS2kPVAC76L&rS7$q2>Y9f z0U|6%Mk&5s8iS<`$^3Z)i4kke>ojI`>K;hy-;fyxH<=}EGLE{-){3*%GYDa)rQt2n zOVEi~wnyd39+(hVJCknI#+N5^FlP;Cq3BZH)tS#=3&MNL^h+M23d_XL*tA7W_p<6A zE|x=3uQ-H|PC~vj(S6-blUs2!EibiBvxWI{==4ll8{uPP3=b{O5kGb*Hb~( z#uJ^UrHsF>1@FVZvaC6u4p+DAQYUOmiEAi4En9+EsPpiB^p#}Fe!~IDmV8q{?sc|6 z(H*LtwJF#q=veGtXJL%D=y7#|mnuq5mnRyxXFekQM0;dKKXKWe>cTydy0qG;(70Wl1cWsWMkQ^`BwcoMD~+3jv2kzE z`g?|3m^xR-(3KtXJ+jWm@8~n$@-6YbwW5jD)$_BwO{8U()|0n+_B=_FG0{>SBj=hV z)bF40E-yYQ)Be|rLhKd9XYfh4q&~e1tY2X%_Dx}*i#RU%EqdD5u0?Y6ZveN9l$i(1 zSJ~@VF(Vdk8=3D9sP9V0c`H^6cI2bDpV1z`83jXbIH2&xw3NiZH}3=jb}G%G)9}hZ ziJAH(<_hKwT;HvAL9K0VTBiv!4C-ubYVFn@ONR_M(dQiGHo}|a8t!2Idy?EPF%NUc zO81E-#z#Esx{wKVXn~eDg0b=ynX9W{XZ+rz`_gZXTeEw1Yqw~xU>=^7uh%_;x|-h_ z_ZWZLh7rw}E6WwxlD~}KV{73A@~wGY*z$q{A}cEuw!8Fy}4g_oLMrnv2t+UuY%9 zo0-k6)Zf7G=|dLhK^OS@RLThZ`iY&y4E;sJV^GpCKX&vgi~JYz5zLh#jMW7=R$}&G z-uZ}f;mQKh0m(!~;tv0(33K1Y&pV~3V2=_c$%x9r$0{Xn1ZGI44>8r-;#$MFGiN4G zTxKQhumWbbtfYb0qeA}+wxyI!rp|m$RD>}D5DOiKhKUy`mHZczF_yL788g^6*31TM zmGcwt9EZB5TjtZ&R``s9FL`^72^**?P#fmm1}`&H2d(1H*1vb187Ffq*pKO4*JaAu z{E3;@tB10>nwGt%ZYtW0H<~Zd2a8DOwU1ri0k<-u90!DDTl9w5Rt1wo7=`P;L|c*i zP(BTJNb7;^3AXU{=#~iMJ8@bj2|Df1YN!rk@!g1F$PwQ|i-nZo)tw_(anoB0mMQU{ z6SE9ClR{+7;kj>we-XU-Zm6C5bNMX z&O2q7bjM%Y`}aFD+~_)^aTVFR$(Udo$1TDO4W$N&x&Dgo6aCqjm`B1gLB?_G zvd)aV4Uqq%?&nGO)K=RL99rD6a=H72WYsZrF+qH0B!DtG^pG90I7pBml3mcsZQY-d zya*pHe_}nt)_idw+etefCc=&{!;FB ze~GQJ(ZR!ED~kWUYEhg>?+k zZ9ZBtw)zc`HUAqzwh{af@Qpr2`J_|EdQuPk{ zkK=5~4&7$rBg{4iFw?>Y<@V(7$)=jQdS$sq%g;O~wzVYPZg;yWC1b>!tQu~iE`&aI z?P;Hs^U5V6_UGuixk<;zusWVO+VUYVmfK9dsi{_vsbm#Tj&Z5b151r;jtvBLp@BhO2R)0AVc#CfOICmQFOo({aY++NwXW%pO9jmo>F~!q|L&d}h zzoqK@(*&B#Gi4@*`9sT9{6*stXa=LSAp#P1X#sn0M4X=5QryT_iXT!FzOdyFq*mLF zs!NK=Yi@Pi>OSQe*G=Bn256E8qJ+h-LKX!Yww~Bq=r5O38Ap;vNbW=-0<32JnvP8a#C{90NW#7t1 z8GHNehR~$d#EQij=HrQ&4B5+>LaT&f3*>6-zU((>Tcbaq{+x8FWoJ^q!;CQT>7q=N zBdH?}#jbb`l^#xNyS||jIKbo+ms6&GsTgCArz;&R(JzwmchJqoRzl!XHQ5(EYKOn5 zI}%Ry+-spcNDN1BR!_Eh%MTff<5wsi;9asVu9-HX!uRzMR=%6tDC^SDW%l1c z=G2)93r_utk09$!AL@KaMep*V1%?|LCK6o|csxEa;+4s_1hNiW=(e`Bl9S2$yih&K zU)^)rj`W^*j{5pW=#jKAGWDCo=?=tp?RFrS=aKN(PA17e!yY$VXsW35WY4>m@?mYM zaq;<9+Jl?0*WT)+u>1UXuA`Z%<$Ao~F7Y>zi)RdOrhR0;;JAd|wv!$dk7R1@kZGAW z1vP^owBG^1V;2eXIy)veSGxh15L#uwk`iSN*KN?hNR2(a_zM?|!z6wlO3ezVZW1o* z4e9g z)?3(_DD@o=3!S+7xRr2Lf3h}$Sqb)F9cOLk^5$PIt9=^~cHrS)Rdsutg)MXoerc*j#@lMG-JV>(uUJQ31XBdxgDVbj{pSgq@}1V)bfZnQ%qj(4UheS$0Sz3pw=o@j0%JIee{&pLbv=ASrGaZ2a^ z5~=z1{g&Q56>{x!XgyX<^okor%jEYr1mZpe7QSvV173*tfC+aQ%l~?Y~sB*%wq9V}z}LuKL$$j8=ChqPE8LHgola*sC?6`ILB|I723c zdapPT$Nb;#rHPjs_@m;7SvFp7z)`sm@+$NlaUc5@G$Vt}>JHv0B`vTuT-HC!w=(&M zZ%4WP4lJ(2wxqzu7;}+hWGzX_+f+wZF*LLe{-doKb5ZEMmfwGMY5+`pQM!@dy zhOs$!tjPJYhtD_Ex0x}e$i3RD{vMAKlqok=850kj*^G%w+_x0`Zz$j}Iw(%;lb%^H zN4%S>eM6O{l70nNqUM-$BklO9Z)|6mJltn*wL}2t5}$Z4#QxZMM%Qzuz3-QkVVScC zJbBoj(5ebL`@L&HN?E*8e5>gc%>`URtR6Xp@fOe8NN!r_j`f$vjA1h1U!Zgankp{0 zBJnVMBXN`1skK|S8xRu|tmuC$lp2oHEP_bHt^FxK6A6UM$H}IG;4HV(<&iQ&K8K&D zSD~Lz;vd>gMqzS%g?9U+ZfVZ8y_F}{c4e?S*f(DEj3sYG&ygxYy1*WqKceP_XN zKTr7PHViN|#*Ed= zw(R7YHp&9$SW&wQ+L)sGptoM=P6`Ahl~MWV<`7*qj)*w3ll<%8t&mi%9J0(FyQ}n6 zOyT8e4v9G~X&YJ`AE)%mEIpQ5Qiz2HJUdN?VY>d<+~1BuA1)&g9cGIDNk8tO`RV_0 z^c@aO-EG@dw5YVC)ly!SQA;gVDygDnWmHjl#0phFR7Ps4QlWsz$j(uahpHH=6p;dn zipUb8MF=AUq!Jb6AX6DhAi!aTlMu4kcb@Mr$T;J7-PgL`ZPE#uH}(rzUTh7%!a)FY z5uc%P_dH1c+Hyr*odnwr%nK3fV9OQL?54b07l8u=Hp%7>amoq>JCpS z?~du$l_rp_9@F9uRe%#~MH#uB0j~QUGoHy4`5>=!#lxB4^AOU8RXZ;``oell6q`z@ z{z|yXqSa^4s>$UevFv)u6JyD+AY$}Acye5Csg`LU(kGf4J3-wSN?vZ)nGibyuoP!t zT@4bczE2o8WEu`<7b+>Q3G3`F!=tGtsy?mlko7EHXDJ$K_a2I?cFTKOe?P}$E3Hqi z%^`YNX2TcJ3lqd}sJW9^lFFI9Ha<=LmseqpDYvCVyr0_BX#wdbp%aJ54%|+QZ3Rxu zE&I*;rr7r=moaygF#{w40N>x}3;C2uZ=3ck?mj_IvgL`~vLj6NZ>fO6@*ifhS=QhP-` zfs;W7SRzA;=U*u{GjE}+ao$0Tj-h?nt5V?HNqu>m2gRy21|#E7u^XC?j%z3d3%<|h zjGT4+g|jh2#K~}JnC%pPk<{k94iZJEUGN=bzSOr?_ul?Ez;;iLz)Zw0CXP-&xAE;s z)r60fS#X((!>I3=X3X1SO_9*wvxf zdX%^8i31fQu^|5g(}foj%IBmlh4es7wm#kIcMekq?^&1EJ^DoOu7>m!{1X7)g<5bu zhvmsYjNC-WOiUQ<@~@+fTd@hWwG!>hiW8%wE-Tr|`#5#cPGWq-mtGW4suFJI(a+Hp zJ-lBDev);x!I*{RUds*bEE#Y=e{$3hJp36S`r49+(_NK@In zK^*b(=x$rn4Y3CM_;h)PB{yi%6>6`-(&l__cY>H-m$pySodEW6`CVIGUg}3|{{)Qb z0|0+w<*X#1bFTT}a$z)E^8)Te3T)i}j6I}j?An_o?)nu`TNb|@b#GhvC8|9I=aDAx zM?VEdOS~H+=2j6*pXl1ipZ1Tq^6y9z6?7MDPBOjcWAhe~_R`)M7UTy~BSEf*m}PrY zWI1GcmnYnZernv~`bwKU07~LEVP~3axatIEG4C19A$p9HhAUG{Von;N`!1jG zOicSrI62)|Pw6piv;7^2kAl4mhHe1ydAuy(5>Q^c0P8E67^U_?V>W<`pibtz1ONhB zYG6&=4{}fOfx7GjGGklmNeTuk4n)b7PIOFdgrjNqB>^2R&6$Se$&tR75CnXbDW=VYI6fN3mT&k@HYcY$W#w6 zB*O5i>NFtc&v^lHhmVE%R9c@$M;}jLDms(A7;Z50ciog3L$@}tWf|Ies?N;$&1ou2 z6?ZjH)$N`hH5JT&KNWhZe$HhF0mQ@Qs-xM3!Ws`BL2{XL57X9CWP1bm4`DrKkg6HF z|II$8wpBX98LyGkSsbm!^O3a7{hFJ>UmXvy^`(NGN=;Af$vHUcJA3&Wkdk^r`3CNd zL?>XT{tG+sz0k^tmw`X9KCM{MO3$Ywy#Xg*`8{#n3~DuM(@7~zx+g7*Gn?-P?36fQ zX8TFqoAl_H+eN#)R}=W|E~_L@B=kBoO^WYH@Dko7w+9~<_;YS(GqY$4!@M4de9k7j zNuEPf53EBxu|MkP(o%QgDaAg4{^OQ|d8)KQv^-j}a1uYc(ZZ;hZ#=pdWxi=jiHcbn zVT|_c;`0RRX0&22Q|6envvk%K4!F4qI?O_wJ~6F_@~VU?r>l9>Zx7S+oJwrl66t)*CLY81HJ)3JCYKWWt!~ zeg=+n5`g^Ip;l^O&Kw^$d$Br|Scr()t7ks(^~PWaB@aRt1s@~fD$%@6wwkt@DS>r3;` zY_N3bYDfHo@ApYKpOlycsEmEfo%+I^wW7fuZ9(`90&2mX3Jtj=2r92~wcJ&;t;tbq ziR*v?F?mDvDB%M_gVxW^lhQ%{WAsYSh#uZvSt@jWA5KxUKJ6-Xe9$KuU4vJv%pYL` z#qV%Ksf*htuPzeV{my-G(`77Q2*a8uI8K)cQ`Y3J>=0x0L`TV zH}iP^jMp**fi)>55ghIC-a2{q&7cUwwjx(h@Dd&t?4p^pr}hTVWWDzcHzMOdxj=oV zGc^Veu5}l>-IfgYz^bx}J;}Wm#jXhytA3@X)k5_n>B=I2ZGR)&BukB% zSj*NSVXF5zcZw-V#z=)U5DE-%)Gg@o^}gs=qL;M&BFF3;S$JDNbq1~a#bovze2P+f zy@Qxu;!tvBpPiEk%;vy5ez(I9o<;$V$7J>Pv=9+(JMXF8t+*aHY9Og5iLpu0W9>DX zTAc(?1@e=sQjqtLt@Bm~f+S#~xf8;C*m_-eR9vsoH?SajSkJIC{=b5b=QlK&S@bE@ zv55(IXaiFfkmYHZ)@Pb+IzMGR-bCrr5>`sm-GNR?^JkVu>ws9|9$rd)peLU1MLmZm zv}Xo!R@{|o-s^5vs)a4K5$XHlMJ)+84rFGHowxA7gB9k~_B^9AO2xaU9VcHP^CBj^ z@b8Y{@HsIzi^&x@?Xb@*addxXKGgQoZngoxyH@tKaEc%P-ka}pO}}3@B^iDoQ~|$) z8O9Ez{VJ%H-HV6ezPVnAj5!6rmE;cX~!SG*Al-`zkXSENP=H_Y?Z zms$Sea)!=}bI^avg~o>7y}Pf-h7+p(We_cPvMLt9?lJ25BQDKzGzYZ`J0CrPHkHJE zgDFbxx!{!iVb8XSO`thC4QP)oov^byd(E;=VpP;unyz~UIZYBGUxxqs(pzD>2ky(@ zOASUmRZU)iCw<|c&RL?r0V1NeUwR2d?3ek1ca(mEaMfqd%$&*<;@U7G?>{T=#e=Dm z8xO?cel+-$**W>TMsJQ3;n#{7e<_w3!_=iB3f2a{+(&|Sfbu^12yZKuAi1(kz6T$& zs{?n3Yl*^@F^PE~)%2=+p(|D0-9f4E_n|uAMQC-2?v}imxZ=WFVVT>BU2Qo!A99!; zd(7&*abnJR>{&k*7!EW`Bc^Kg$7FuudyF2WJA`{MN4AHugc*w5={*<>J{8@Kv-0h4 z7VCEb|2mk7UxjHURiBlX*t!Ltj!;zu0oGIHu>QBGrRMkIpZtO0kTkVv$LvpdfOzr5 zsGb_%zd@7|IQX{XT8{j9gNlx7u)d$+t!Q1sAE4=kv@>iY9B~0-+6`U1ER_1=&&U^( zT|TF8DNOwl;0DWdRMr-WGHf>dg7t{p1Vm5Q-I`+ym5lB|DS57+L5<@3%>uUaev*lJuqf zT>^kURxVQ)7vNyo_{b9Ue3SmNH5<2r#Uc-;HTs+Or?ft*=!PWp2)2k>WWiqB{$wu0q;*pTR`&G-jt@vB50w}dv8x-=cmp+ZVs5m-@0BQ z!xtYZ-uM7$pK$6SFH_jiBhF!~srCDpTW6p^$`bV*rN^%w>dm1kwYPtBZ?Xh`b}`&Q z-8fp%V@k>w<}^i&0!G*;G0Y^lZm>^TC&}rjvRz&KNYzG@m2Vh>$|)f3aFPMWR`TKO zKZ2Jgko2;oSWV}6D#8FHt}csdHOHt`c0}Yxw4E0 zn;4Db9zIOR6OOzUs~H>Jkjj!h)3_6Cu!ra1GN6XuIZDs_kT%exdZ<*Ewf6(W&8B+< zg*ke&f*M#pqG$Xm^$WfS382SH6Wwj1CS7jEx=8)%JTY`eU7zwmL6LPyXWYg|I7O5W zl(?1-W%PItll0@4tk|Ds*P;uUqg5-uS36TMr{res3>jtK;%*IQO69lIaL95ze-zc;1DbsgwhV-9cMCTOXJ{wH%thJF0u?xTyz%TKu3 z5L0>)tz0Wz!*g7*h%gaW*JUT(3Zpn9Cp&K*pR4_M?ft9_ba!U({1)weCy)2F&f@P& zu>>?&-yVM9uMDuzLI5*CP|jFE(#@RlO^p2O-hlg3_AI2QaRkCgx6@z5{Nlo?7T83` zi*OT07WxNHCwVT$+12lE;E4S94NDm>77pDEiP^VYlHvc{hH=*16!?<57&v0~5hvS) z3~e>&Tt@QN7N+O0CsL)W;^Me{B1&(bvAcJ@%VI=lZ0THRNNWNw$8(V27bd!bJ_Wj_ zsr9IKD(Cq*XYSxqVE=Wr`IasIGgddsj6sh!{OXJWsRcNN_0~v-ZEu&ald2mRD~=IV zDA%Bx|4IEV=0P4OGe7f`->Mt={8QgLB9PTolQQ8rwM+JaqvZN1O1k4Ffn4hKY#Kx7WvRG&N#Sin|&^L=&V_l^5c-l^gh*8 z%08Er9jdjY8goXj5tAQ!=J@8L#q%8KvG>C2@!VuRw&o%+>>tiIzHI*I`TR3qevEm1 zLU)g=bnLAkg*W6co;hTrCPMjpBY)d{BNwP?Bp^grAFX z%y7^wXIBZQ@6E;%NP=wWD0e>pO{6OzR5GPCSj`u-^}Jl}ci>{ERL0#n{A)}Mg)^DZ z>Ob2-$R^x^XMx$(h)9l%FJFcDs_l(T^$!f|7c59}{25`D;JJtF;4FDD+PHaVC|oXq z^jV%#c{Q#oeQ0abzo!$?bH22@hCj^q8HMId^39$^80g(Nn@BOLu^QD$U~U_mo9MqH4x(#K-yG-^lpI zl-qg=7ZOj^OfWl@jO--ET5*Q6c7)pCd}-VeeUTP(-;Z(GoS``3KZBzAh@KFp7Ne~uOc1=!@0DRrKE&;H+W&(z+&KXj*ly=$46ZKejlz3W);aVsYNcv zRcVWZ%3UG$U{?vTQ`W3HFxf0}h>{2=d`SzwlyN1n;q5C+J-aG{Pr5cT>M~v@ZwDD} zX#x+Q2U)4%qy3r5g7=lO=W&f?YuMzJlGBKLz;s~IcV>J6S4Dbfl@u422+54A-o`(5 zxzH-gfP{Qvi~I0s%1>`6bcTn0a`?#)l8o$FYp(YBjnrSb>~J0W2XNxLxAMhb!;7&R zH$dZ}O2B8dPEMz8E5KEZS1NYp3`j0zrl?EQ+XT0uz?UD7Uigc`l)Mo98uNQ#bx(^Q zW0P#U8O$qtM(QeD0w3_^}EQ>SZ%lWxg6GBpK(}&N2dkA7w zYlBd}yCKec*E)!Xykz0Hz)zwUjy2R1$|0QVajNK=dd!k3jiZTH#)}JqcUdJ{+bZ6D zJZ0O?y;C2Zm~0FHYlpKXOx7mRKlBRd->SOAYO{ZJ0%p{0i%7F7Euex0MCc4o0SdaM zT=Q;yN!feWhnB<6BE3y+g`X-2w`Y0w(4dO8ioA}Y(LPFd>MY0WAl|4rj2>uKRJ==8 zl!NG{sxbd9q#MB&NDia4cNwD0weF~JlSxZlHW8uis$a;w9X{3dI7z58|A=6Bx-PfrFZI-aXWvpyw-c(1!9kR@ zANmNcWJ^syl*`(8(wEXXIB#JME9Ly?t(}BlY5X{LCV)3?<^KhJKxX7IE?P#ZJ2!`r zd?o8zGQx%7bLXN)&PMF^gxYcV_jU4J6{t5yHMiuB1)8iuNy-$pfk|Iq%5geLKQnQD ztXP*T8?7!YRNk1-I=Aod5q#sb7^f@r*=%|j={k|2L>eXO!k_U8}ai;P2U5b0U4Tz72uaveb3$PwA_iu#%I&kRA1fp44`He4!(Ckidvo z+0B%;=dlQ#MFS8sp|7q+vBxsx&jChi;VMXC0XL?2iE&G=LH!GnJN`kjg1zm1iC z%k>aEwj+HBINMUW8c1(SGfeKh=b4wc-=jko!(PA?yLyN&8Upm2^FNGypz{IpwagSytM<6_X33=9uhc zTFV9z8ORKz?NCkA>>pXCj>I`P2bT1ac{_*f@Ay$D#ZT% zq%L>Cr%3uU(Lnn_4w#5}d+isl@Q;+NGhQZ7^6Z+g3u5tY-gn9(!Q6DQRgasM_VqL3uNK^%vfmGL{>dwy&EQBD*7VD_?qL3dmp zdPAV(x!Q`Q1^S0~Knl~T0#FQf|YB_z&p+qB;Pg;;?_vB^BFA z%!oa#ARW?VVfw*)rP6tUt=~G7@Z3w~N=riPBx_Oa9WM2FuNuWQt502>_T>(CaiT4b z($fq)F)y~cQcHC#Ssy%*fdl5_siK?2h13Ohr9VgdgmnWaA)LU1`<7i+s}Ay%<-|cC zImQrmDqZ&+O6m2jg{hE{0_%zmMjpVKEY5J=t~(9a;I(^ifg1nzi0#W?f~ViQ{Y#X_ zDgKF>-^tf(wO`K~sZaj1OnS|UdK}R>Dp}+SF_4*uKQG+Bot)HDUv$!k>0jv#+3^cc8ECqm8f-dg9F)5I+=1dHEri+BZp0JUGUA^ckUld=iICrtHOhdiDANqd-8@&} z$G{p#RrfO#cI0INx3Z6McVrYbQnykuCXE_qyxKNckxqlMx_3G)?pgi}BjgSMoaY@l z6?vU`Z}13=gHPhScFcY*n2~A2zK)uhHf~vwlotMrrwcDd%Ixa2s-)}${noS@EKZUT zdd>M3H289RS7bZT&N?8JvO5BC@Pjc#Ko6xt#excL?{?j0VA=QVKrJ`Sk5#L@3*~0z z565G^kDoII@wNJAtPaV)A&H_uXUu!=9?qvR0!aXMf}QeZS31^RFlYL3B8Pu9YBh71 zuK7(@M7++PHWp^WO`fvro&s5$pn=~|167aWZP0+)%2Z@q&5Sd~QHHou7g<+5<>IdQ zEaEOb z(avF7Yxw5kfP$p~^lZmK!cZ&4@<6H|V=33>m?}&?AE@H^H59RY0J$@c%iD`B>9dw6g1W=W>r{ZlBj(z+Bz!wi{b+(Nl(&U!!1Uukx z5hFDuuR1l)AWw5}o$qlCpQG;WB`3uAx&AQyecB=F6jSx<1!2|lPcJ&4Lg_ZYWh#fv zT1XuXNT(U|Rz?R?2aE8dyLWn70xSY;b`X^3Ty6dzZ>RFw>$#jo`bfD>bU!=C%tZ7T zvhD$}75f_d;X+757il+y>JfeBv}E;??8y5);@{LB?Gu0w5=f`TYn)d^_y$&Hk~$Wr z4Bcbx)wf2|?OBTni$8U(YVX3VLf|SFd4_F~;rlCHLeye_>}@!0Pu<6i+&uA9j6+GT zQ8AV=)%x69@ukomUi)|6l@4mBjq4yEU>|f{*w5R@he;v?Lr8`ZfFjEhI6eRv+8rSG zX@yF>DZ@qwnfrMabG)L{bQnIqzoIjaam|hFyuyOZba2l+U-o|#(DGc^7GtPmb)cr? z<)$~ZaMj#-MBrfHQ2)i{`+IAVH}(nsB?U4!!5!5s{dl?f*R#eSiYr~AoSB0(WUo%piKV~r!@ zXD3-h0??%9#E+xtB zz~g$^rX029wHUH&M)%r!Zr|1i1uSklbJRSdck5td;mBo(V_=>lz}(n{8yXi zI2r|=g&tww6OOo5NYN|TRosdK+)A#Q(EbKcKS;t>LKcDa@QW_Z%-MKuX%L${nwY|MJ>2lX9z9_BNBV?8 zUYbi?J;=A`&Z`pJRa%EIii>x6H8XmG_HBEIK=@&F^oxo@(GRVa{=jUEv-Z%)u>^n9 zuYmQJGjo@KLEuS^w*PvC{0a7E8Pt=t6i;PK7Q;<__=M5`S)N{?fB2kh5>`MI7<1sJ zj5LApQNEvEth!;}wS5-YSi+M?d8`XBx-6~p%;Y|M9o4~Q;k^EFi`;(pLk@L!&t5UO zlQy%KR|Lb=_>6tV-Liv^Bai^JOH+_(>(IDCI)2?<=R=4KxcGH}*l|#-xi2++A#UYM zM^Gom7s{1?5-l;5+^;d*JGsU!W9{K?7Ic2HQTC+*4RIsJ&y05KusVko!Wq znU7F~BNlcLyUPw|$yet8jE$Tm?8D zGVk$RNcC?BAWZ2eKW^`$k-G2=Dv8HNlk?lN_+zqZqCK5eW-0McVZAa3b%nPpi3h?0 z!B04`{HJjxXf$O}C`P0KlzH|v0JvUGku}Sg>+ZCj<3Ht=R+Ojcf(xf}gLIwbZQ7lt zgn5v0(DNz!56M50Mfb}Uie=*A6&GrcruXsW3k)PkcRCCc{_vCeh|@fzt3%RPDr7fC z9YSC`EL@s%JdV~ty~RNMcDX?swE1n8#S=wJiqK8n*9vY_YIK{62*7gzSGeDL^Io95 zRM;Fbr_hFG;&g4x(m$ouLTep&-eUhWX!1W~)H=qL|9t@(TP1_^ZYzFE?oBwNjWv3r zqD4jDE0Bq*jsD~H260M9WM<7CmC(fBHxep{95v#G{Z$*yaV=N#)Qnu2PpcHU4M;z( zCbS>JKUdaW0Lt^}(>_BPZN85)F!+ZVnK|_5lC@88CydV`ysS1jl{SAsA_31u@wwtY z>QtTT>ovr{i!=^nP%?pu=#=!Qz7_cyjSuRt6FaF2+dtX5{u$RGHIbETi1e&k zQgyevscY3H{`CsI_0N%nF){W-sh5lH$9Vjx8i3a`#YV=|GaO{>x&v=sj}eZl7ppX$x4MS4_13Ez(;jBMS}5)Oo?`7!v%=hA71!6HsB9LYQu-x|YnY+0QQ z1pbgdb!q06QJgn_XJPcXuwr9VCX`x-Z9hH-d)i`<`{_97j1QeNec#ZL1g26&z_EKr z(--`2=D2)Gkm#zHVAf?~#DpGKE}hY?F<~9s8*r>JA3PIcq86}{E3c?X^SI4yy;*Ra z?Jq#{8rx$(H`~8CDiIzRnwGN6A?>PWH`4VaHn9c^)faiosq5nNu=#pdW-713Ffn4^ ze7$5vzfX3<9!^j=xcoZ-IDz8Ya+z$W%H^rL_Yq6zg{BLkJDs+!>OkCc=uRs#`kyrn zfRNixFUd=7ntj!0xC^d+R$I!|Kou_rBx{to2<@T2F=c$<0Bx$%X}FCbe$PDb<+=75V2lm zS|jX+2(8a^GOD$fq`$@ah3Dzt8WtlKd?kcfi$X$UJj}SjiCo%UH=8QHr>M8KHRYe- zMn8u1TH$g`mdv9%R-}V%E>}pA&sY5^o%Pl1&~CVe!UQtQonQD-`6~0X=P6D}#F$^) z=^-*-R!s(zDi5d71T~uBHIV-mNB!qa)MZg43z0~wkigtFl3jQNb zb@QAxx;?WAnSg|DHc{q4USI7lcHN)4Da&g2_Fpp|SIeN39Py&{yY z-&$bLMpZ8f10UQrKc`cGKrcmF)DMbp!SE2{djPcaQ@faNYtPbfwVFlzC_E2gTyN$} zBn{Ecrv~;HDg2^RC|}gBi6EU5uw}m5u;J9vH*Y;< z+sR8ay4hX8;J!L!FAn*dMDD|3`EyR27lEZg$UnD?p(p;jCn;V4M5JShmhS(ZZBw!S zgaagBINV%UMN2s|@yO+n(ANrMZ=zdhI1TeP0_l{ukF`foRj%dI_g4SMO2iQmP29(v z$AOoVutdh+^A=`lXY(VdR&_>_${xs=1V8{+1S65gyZYk%Q*PRJCG6=Geex+h*}oVgh6r|J}R9}U2oAm zoP^;IcQZ#$FD(saSd5WU!PL!wQTV@L- zHd5XdG9%oqa^WEMqsURJb6aaoIdn*_x5P5MxA3#DGF`Ux6Upq0O)IR_EXN)0>9qb1 zqntd)JC6n7Qy0NbNVFx-$WS~5vut`AS+T@va}<>D0~fhxGcO0s!PIKD&}~(8wNX&l znQp0(DxANN0LU4QOfE5B#(f-evDet<4vb$SZAly3Xo1%g+Uv~~T2A#6E$F69cUh`u zyhutc)OwkS|2#1e-V^%x~ori1M( zmxOtNR{n?t5R%FokK)^x!_0bd4YU=L?F!hg_MM|DcAB*tS8zf|@nyNx00TD=nTpaG zUPP95+ZlFPgAZG<-$2NrpjvF%Fsykr+x$oq6DX}&f=kxtnPRSKJ!Dm5A96Yx_*Mo< z8Y}oL#^O02lYKO%+`Ofr2Y;d!Q`k*iukmUzV1)hcJflmiIJU6D@={kf_eheoBB|8* zdR9U-$6G?76!z+O0eA>bwM0@-^!Oac6?ADJ=TfAcVmL_B3ecXUp8Do+qc0ek4(0^` z!y8+&9WVU}Yua2jTL*e9PhKMl0JwB%D24C3GM3VK!CAua&>=3?<+rzNv8|yxJ?oJxWRHr_P)6RNB35fo7kOW#adTyp1mb#w-8%3T3E$O7Nu5A7Zb(JM8LF z#wP*`Ym;ss88%Fp-DTB6P<9{XH-Kv0E96cvGQ0eqqP!#>`o(#e+^>>97KR!xSeC5+ zzcz6=`g0Q!-{Y<=gez%*=|igJ$9KRQS6V~42DFJgvrx=q4_!JsP5eII*!7&6&8BZ_5R0WA<>sy#xT$xF|| zOF8i3$rhoj`8085j2LD;5A?357i#03Y25GUQ)kzpXReXYvcA7kmU1dWv09+tidl^w z(vu5bI_o|n>1k65!ah+VrCBSWftdFg?yzmpW7VulL!XQMi0C7)0}BBXcS{3g`?fJAjVvv7ng zwy{T`bi42!AK+;XYjE8j%b)w*w080iy6i^xCNhpYgN&2aIu(CL0H5w_{W;_ADB zB`wIXQ>~@PgcRHv?jLdC32^tZ()j}seZpb{2`wB0q@iKG|9s_&{~efHFBCHFVsE+0yg`LRZvQ}4%;f2Rm_27p}k z3-$vhHsxH1?2nkqRk?P;2RVFvIM)&m3>7JnWo8K%sOMXm+|B0qjsx_VN0vtX1H$WA zh3-Q$sm{;hbxF2|^k%hXZ|D1dquh@${KmfPE6k5I{Cp4$$bwtPz!-((X7~| zOFy(cb|aOSoR_F4H}Chp=p1<5`t0a6;$_EWM@ntnTI=hKM9}9#&O>$&35;{5#5vf@ zDH)Fx`#pcjdCwGA%Kizi(w=}Bah#!BY(*_1bB)@LB1x-0#rpKcZ;V;-Am)@yAoBW- zc)30yic*8;^MgG8Da4K_s{4-wAj z$2SaH%#R!E`K}ka51cjjV4`E1L(+(A#JwC#b-fFQTLOFl9!U%=`P20Ch%aMzmG1B4 z0ZGb_BgjJ)OK*cBdmTyt^f2A4eswwF8JVP%dkgm zRUeeTJTk@7b|fVNhswcC=N<5xBRyWKNf=$p6f1f2`k}{~z+ksRC+*#nethBgVYYQa zD|;9}1BT(;;!C$7rsE5Q_-PFSiAZ5}j`_ura!36u-+Y9k$YPA*t4Di|wcKVNdC_lS zBYCh?U+HCUqn&T8?^n9Ugm$(zT55}{HquVYC$@@q-?Jg@FH{>EN5FZ~X5uton?F*{ zzpd#wC%xb_ndpmpckGTgCC|Ki{La?r$v^_9Z(QZQ*|kM2Hq~iMVn^9U0~#>FX^5@= z!SaRhiGSU9!M%3$nVbuBu&D$UXL^_MDR?Ny{0%lRc(<^(&`^8MeYbUrzFqP@7{U1d z@gklZbOP`KUxts~?;puCBM6{Y7RSp{w_Ce=7kaFo5& zA^8S*J26CdfX#yRS3zpn0iX+2kKbta!o_2qWsj_-kpE(Y;zixNF#ko#VqEjsTyxOS zDsvm(LtHP}h__fq0SB!0j$%LjH>y2QzF3jw0RD>x6N=DNW9JGs6UR^J<-f5Pq$F<8 zXn1tCtZAM4!V8q;DX&b}d6c?|^xyj9#z;XGQ&7);yixy~@qBAvA=zdwE(^b0+~kC~ zd4J*d-GV-ETv&19uj6@CyICi;vX54>)fMxbZ58@w(kS30b*3HKl0TA1mO6b2IwS^G z*;^^j|L3i!7tij*ZHAAwzM%DoW00zLM8x}us^)_#?M?x*>%b@D4?WT|@LK=hWZDvP z4yZQrpH)HK{^Xio8Ohb$j>6nKDtC%23Zq;}rdHMH^ilsY_oL>g*M7%{I4YuMN6h4% z>RAIgGySWW*jJ2I=!Ny|@O11tPwns@TTe@>fq7qJWW0!WN;0cIH(Q3-S#SkR-~jT? ziRn>E8)YAaz;C%^Mt~86+Rdjr^fs`G(Re`ebI>nmJoY7$TY{o9js;zH}w8rTb$fd8)Z70pIveJB9QPv||W zy2hi%VZ%lLSqIFDt7=JKGLZ5<`El%PFXMEs2d@|8(_Wl@QJnD@t&QI$DHAF;If;(e z^I24U4FL_LoiN6^RLOw;5w!MPXV;#P`RgNzyBWFp%f6ylwB5_>D}_qnPYnAF{cnBH zX3;9wu3d`1Pg0)5Q7jR;P^!nx0NR(}CRK@_Ocqmk88$qgJnEEdOe2dwbdJ$3z13w! zblJnDk#Y3T&1;BWBfjk5?F(6^k+4>bdy^As#N`B_i2zxwlP!rHdAyT!smfk3UZ#Ba z_aKA=ScA$vjCoopU_kO-Yje5BC#DQfmWl|s_33lkN7h@$C8RaG7{#@5o&AXS_UP=} zT@6R+v$~VHd9Hs`+A`$N1UbxZxBW}8&{N#z;W%ucC(#rQmJWYkBb#ZNwlsIAD&ToU zs?dRr#I^*^bG3fHQ8C_|Dy@nJaiQ0+OzV=wDU&a-DB*_yF#ZJO8t zjx8C89m{$Dcep7urXI%}UMJzXKIiG9ZfdIiLoRTcHu%h(X}r7*Xzg3@Svve;n6|eT zkcSEY^azz8UvGK%{Jy=gVe&4{eIr))^xttbvLn>AxaUPCSC z#yZLPQ6;7`PFOCqD;1z0^jRuLBE^YoT=K8ysILZfP5hs?YHgE5s+#4Ga3Er(Sj7$7 zL+I)H)QO$n3!Ld1(-LeL(nKKzXl>N`?v%}AjdOcQRY|^8&;{sh$R1Df+K9FYMG>-* z>8-0SUc}GKMW?`c@SOJ`UPh0chgAt!$b^=4R%zQLno7kboM8UtTE$B$_D)A{t%bbw z2VaU=%h&Q2$ROCKdRDxLb(axqXdV*vcKAFS4XuJA>w}1_SU&(&m{FZCN+3U?bVgrB zVMeRAR1_o!;bCF)M1Zx9DdLR^RxuR~lJbnr5l_c^QVV(l-+jWnP>xm&-{$-dRxYW2 zFeI3A3s0eT$K)=gdd`*%YVOqJUnk5Me|Dtu>L%L-FI6kKsMAUCpk{XW;>R#*WUZ;2 z@RIb)2${?R;-gZl#N6q#r{?Vh~8cLE!j%)pO^0NnMq)IA^wIOx()t3 z%l^`4U$eukxaQ(6cTK$Y87!9|9T}R?L!M9(l`LgpniI=(2 zb1z9;H92B}cIcw-@DaS1{7c1)rDMQ$*(-9=gi3un8`d>Q%bi}U-eHjc%g5}fyXN!# zvY*VApAw$5o;6+FdBo}_^O4F@f8!Hf^v@b?@sM{w;4`8rwrq&X03Y8W*Zsx^)?-&m zG!jIFI7#7$c<(grLXv?R#f4?#*YdVd@K$V_QdfT+=*z;jj1BgYzm4bCQkFT>OPVr~ z*3_TGot(yeFoM{bx-3^vKZ1u}AYri@@HA%^)>|k)X=>}xpO1%y_z$D^v(+Ih9LPtpTUmi-jIadlJ-l*uO;7_@9&y@ z_*uzH1s#7-PIFD=^vzMfU5UU$$zc3?0%UIWm}irNc1ZTP*p%L>$iI$w;(74A&t}dW zA1sI_I>6nfl<4`iN(C6-^NI63aGg0ik<7}MJixnq6 z1X~hv5i|3J^3Z<&uH7L9YAqjl!f$)-=) zUB5XAfY_;2&BqgK8ToCYihhe0+tpTINVr2HBF2f{?!0c@eTdANl#!m!V}(R6vskkI zmFdZtwlTTQL-ESQ;@O_ndsWH1q1@Km7FL|#AM?9=`F;{tl|H7=rgW#u38();Sn;h71a{^e_0JDM;e+E6orRU#hK=yy0f%(FgmX{BP8>qjFkO z<2K6w6>6f(We8>iRU{zdfZQuMo^mgh`&?!ItRc?%US87~hVbT=4si(=OKtlJNmzqKaSP^5KlY=Cfd$5t4~PT%Xo7#va3_IN2o1g`~!&I zSFY%dKMiDyv}Mt(zyl!$HUr5L;lNIC&a!z--@QJFkJNk8sl$x)dR$@r*O%Dn2HH&@Gl zX-If6n24X}t3KKcoS1me3Ke!A<##vrZl|45zUn3_wYM^33@P?kVqU90HVW&5k~_=H z<1Fk=d~KR<%$_RJuZ(ju6Xh=HQ5PafS#f{;TbNk5&@8XIkPR7|s{J`GP4jWo8%pj1 zLK%MKcL`r^9%}{Ifz9riS?}7kW}z4ehx>7<)QJQ=zAEi&tD)q8!c5OSO$W9cve1+f z8e+d~cQ1Y`fv(Nl0&ylGQBnZ4y-gMM&$_N`18*;N&BqzzB1xeYu4#K1ZFAG=AJDo( zc%%BQ*m!C?MGXB_U1qz7gEL21k}_q&c*r=}3+zT5Jd*tW)Y0r*H_RTwH|8P?`?YGl z&@ra5Bka83uo!CHQ=2XzB0RcN+RE}=*xz~Kx8q6~l|pTRHL=}sY*#~w{}|a3*}W#C zC;xIn5@$IKGXEafBV*lhY*mwy9tOrI#>d2-^@5#V;5YCl694=8rk;ckS@R|A^E{w? zIr*eA-KFnvc2;z;p&v?`Po@&U2|LZ%&Q;EV*)FrAL#o46QFf~z3p#sdLTz|6ui7}RkFBfi99JhN+2!Hy3BnK5WIy~N~sQ=KK%3?-kL`^W5G zOQM+782JDO)kTUxR=6;cjS2yxqiT%#n9&O{WCr`x!18mkQ&n@(T?%vNp=e z91XL07Mqb`NWSJsJCDqn%H6aAogEqfYWa8nS$m3!AFuX8Qm@EvowIm9YoP3Yo)_UY zV<)U0(_;{-MHm{~dL+A80&7f5*Mb#8q?fJ&?N#xNlOxio-a1fZD3Wn?ZCwnmIL-+-Ejc;xN?T8p@n3sja+u>ABv3|X zzBcWnWdD&YSGjuw;kCz1hqg9Mt38D5#~X3zO%Sk#GVbI^y=v3DQs1H^+bT*?U-{{S z`Q{}+9%QThbwT!VyDgzJn>l{ZAHi}wmUh{%(IW}~ZfmK}^ORR={7gkah`aiXp~k|} zJi}=PeW{}T;Tv<(FwPjn`!jmFzb!;|DtT30YaiSACS_LxD75*-cbBd)tBl@RLsecf z)I@jAO;mVLSV~_FUxw))5ocWP6o~-^IeT8QL$#=4*EM#fw&zA}1F&HK8C#c2qbZNa z$*(BBF*SQ+!F+gOcTDfFzx(}C=~IHIZRz7y)#N=lv6ppo#2XWOsK6*7hkPa9&5rQy zY<IE?ae6YRBCr!sjsnY-S0?RTf%ZWIj5^M0QIa3l6DpD5KkJktu0)u_@|PG|(e(HY7GdnL!=2Y3GC#2%w-X%z zK5MK8DqDmhjS=h$mp5>3J$k|oaHqFUPU!z0g7kdg;WKW(wcd4K?Mlq?QeCU8EHke4 z0NBrdQRPqR|Xa3i!efN%; z8KpEEPiM!G%QK2X3ZT`@92?sv3M@?CtUK@Yg)Hw*T>tezR%9_dETs8w?f*T|VkP<4 z0bpiscQ8vBM^pTR)J7aa5`S;t$i(%G*EZI1$-^7Udp0fS8~Elu?Qh__Ph9^5aQ}0x zhKBrVl4K}ZBOyB(GdYP36~fK{oDN>Pl7sXY=4g$NCp!cOSrg!?m^EWgc=aB+oTx&c z+O)BQU@9F;*t#Y8gz;R7Ym-F`fDb22Q-0@kB*_b*ZI<8IGxkbaYC0NNp3sDw^q9#BpvM#I;iGym^jQzYVGnVp;DR}LTf`9 zQc0!K+KOtW+Df|DR@-XbcdOkmzx^J+$M63=9-qfPxA*(=e!pJNr$HgWos>W6RGiW@ zTCvtq`?OS{G}^Ya$x#ivdQ|%$!{N|IM2nM|IpQpe8Nej;;w0xR0Pom@GFZ|Ty(vfjT^AOmaV-eX6rdrf2m>B^6HtJ?tgnEKzo=Nk$ zLm1E59lLu(A>$9bgy4-_K#G`ec`{SS1H%(~a^wEgWB4&lic=t$I1bD=3|7$(N!2jyMq>QsIIW|~^vc{q<9VZ>zalvAGXT>1Lmz!^}U1b4{ zY9olj*GV@r_}kz>@HEe^r~^1;g7COdGyf7`0!Ro(dTf{xzlSJq8ONKZI6l(+5G3iR zG2{fjOGUNtXlQ;)5zpK`I#+U16a7@y5gl)tAb>7NyDb-DMY0yDsX{x_Vu`hv(Yg|2 zU~h537b8%X9F-3G8*nj~Ui}hpkhSO}57chfgYZ$8z{K%b>13CQxf3J;gv@>1ZMEJE z(>R`!7cgq#MVcVh+Zi0HC`tDzzQk|NLhDAQVo|BWVDq33=IVf?WwCs8ekz@>dpwWr zm24B?Q5MWJS4A5$-U&}AEP;yYz$QwEr3%Wz(4S@x0%tO~3$_0!$FxN}L+&3)nh7MG zB%D+Z-x{5~sRdL&MxZRQ#c9|RdSj1uVa@U-rQj?|Eok=n5LaDoL@MR=D!CoQD zUKdJvD{S(vvwdn2_kl4M$SRaE>fj`>H;%DXNIP!uYAcBGbubv~IO{*}>+Y~1+xfol zU^+Ct=<69pH(p`=|Hq@0??)|f$2FVI3^z zZUlUz83w6Nhe7YK{Q1Bo4qeaZbxSKo=St=Nj6m=y6zvbdm1_3A!>U;Cw~+Ks2Y;*c z-2x>=T(@5Q8#yW*YSGN%_Lx0UuB_l+80SRIZYM2XjnPf_&Smkra9KuIX7EPzvGKAVm&SRna0@$O}X1=y(P2EqV&w>*vv4C8}}|r8$V2 znVB9>ZLP4op%YWvTl-hezElfw1)8M_cXhAlcz4MA?1S2g$5Y+szF%gtR~uH~Tg}~U zq^Dtg_LNG^wJ@V$lt|+2H>hHha_;5WwE2Z3N2|UymEqNRrWLGGX5ZomPDS-@as0=& z7Mes~3Ru%SezV_K_O?6j)ts1SILIB9!IQv2V*HW#A({lHm#vFBq+dZ$-JB|O=yCrp zZhXi*4;E1pG|=&qv@fa$YN6K`@s6mQ_zpe2OHV)S;y1BEe+!=gD$cG)XW!?(u)NTp zvB0(vR4lpgdVJK+hJ}8|jrTaXKyrPwg$-zfiP7`$i*w`22UW=td+cfL2>5!$>F^%T zdz%})mFi6G$b3VfG0jx_nU+aL+;d%Kp?xv$v%Et_snch9o=rI+a=7xaK@3x#(4u!C z-v}2MAg}jQIuI8ujKdr^5qb(x>z0n|I;?P1xLakMy=gOIKZNleMsJ6$;R2c6?=^>w ze;em1>K8V3pVM-`NPWzSqYi|j9m;>AoZ;7w8{{vi_VgEvPHB_oU~d({7pwV~!-MlI zWuPIAxF<&&G<8nGluRxx=wDj9JD8D-EX$Doi>Ch|SH2-pjL?nj-B{WWeVCrnI;k!3 zaL4kRK|UaIpGQw}aA?-CEcmrw2>)FFNN*$TRqdsHQ76t$M2 zHX~^3QjKqGyp>Vg@R`0YBF|SV4#@2?!`#@Ulj=tNbdYF&-SUi!aLTu$)2_u#NDAje z#|Ow%(M1640ETTO-?1NE2$$+Q%?)U{%6o0$Z4!l(PTGwB&ukUv>DO3VV}XNFpsHl; zbIHo6M4!a(6_%H3jO#j-`~Xrx_PrQD@PYNbkGrEvU7{Vr z0xtu{t+3D(>&jV)-wpFOEH*qcarMI>=cPjDaCVYq%12s5M;2s|^WNl!I1f00>h0Ii6Nq~m z3!&c zG7x>4FuZ1Kea7-?OdU$=;BiZKc*<4uwoe+M0M~&7QYM>uZd*wY;ufo%q($0?ji$Vl zLh*M$rkrVx>LJwG4SCO2YehjHEu^jQfEYv&3w6EL(NT_BhxT#2DJ*t$rnqnY6&%Tl z5grapG%-n}M?UwvKmfQZ+0?U!IlO6fDKa%KSzhk!Uv!o;jLGw^w-rFX2Q|L6drz6D zIUgRJN)}zK)A`u?<>N7AlvsKi`4ODjeK|KXE!*tbu zZ{&2IDvM8xJxvM!8^7O><-JNUhK6KphO_)Oqh-PHY&!$7b~ z_q$?afpD=1UzeOJK8-m56kdzCHi3R;(4Y~l_q{-uqd$Z{J$Q~ou3(J!MDP1g?$CKA)5>9Tzx%(*%ivY zR?;b;c_DYCIn*JcptIPD&b1YkX|dY*co!2r|$t-6DZ zB={>A`AL7pEgBEt#Rl(^S`HfD%|UOv_;LHqL))fh)H)CM@*00Dm&(ID9gS%^rPe_e z^K{!9ZA6E;wf^M!%HONNfF?!q!(HJNzr5;J^t!2EcsWlr7@ychX5=QsSH2r$p`U&Q z&QG+d&k>NeQ~NA+F1#Q%ZCRN5D}EfR^lA&G_3NAiX3yH@a#6p7qY zX7B3Bt$NSvM)bs~blJ z6;h@3zEnzz4$UX(89Y%sWT zrhhfRS3`A6B+0aF*o`m{0Nkxuqd3|W$Q#eNmXSi=@HbU)3VkXhn!|H$g|QDvNmfM71?SmcaR;Xkv;+3YpDc$}KTNW+nF$mEq+9qJ zJxQPu?Z;(eQCi6tu6mX7AJq);chU66uR{dmDbzt=clX0vDhV29EcJXvJ2P9EIFqxfYQsV8CDZqCJ+$=qE=Ly zQo1s&h2r=l#Q3MAFZi8N%d5gvyh=~<|8UuEFQk#i(iDt=_DJQb04rkU(`5gsz5I5E zy7r7;wgSfMdyHQyNAOKKUUFOIGETs?6cF8UkXZ_80{Pt$ZYG!KzBffHkXf)@ycE}d z6)n4oEn?Mfq&{!u<6 zZkvo&CyzQ<(s02CD2S2*ZAwG2OR8`Un+(iAn{d7E+)}hl_IDptF}4iEyTtIJZ>k7L zVGMKK(8Yf3UX8n(jw!n#r){@W`p`Z70k1+y-~`2x6L0wriyFHQ8T=7cDxg_D@Z?ba z^bUpJaCAmou>?wN)-9C&rgh5jK8U34#Wn@6W+dSK<_$KwNPZ{3lS2cXR}p|es<&1q zxq1}!8TW@R{#=Z5hg9XMa2cniJn10$v1y@#It`Z0GjEqJkiQxo?+IhWTheT?_bB1S zVeIYj)qa`8KDVcUyz-6q>$b5va1H%;%MB$u*lw$#7k>vR*T1cUqAt>DmLTU{L=>wT z54`ur`G`vDFe$2~b`X-gMB73M>J9JZ<;q$A`TN26e2!5p=uO0my0Z>y}i>PD7ZU zR^h2wuDnmd1%J`ql(?F|9kwbgQzh%o3$D`}ghzDgRu6!0Gd^2w6F(%<)H$Av* zM9oYa*J+Qd4v`n(=FcJ~?=Z-}0}+!kiu;me$ura8CR^S@)CQh78m$1~*3P6}t&&-X@722cq%heoU+i#^dZ-U zDsJUg#Q{;cM~da5fX2KHY=R!3KbZb`PAsrBd^UVk=g4nji#564>k#hbdEjLjE^iHl z^Of`6nr~i5d0{9@fz)^R?33Zs6q(a~&p0m2TZ}1rHc+_v4UkHy`5i?afgd@(m z%g*l0@Rf$ob$bzhnih6@W&_={Hd6iLhI0cCWaxLuE40{C!#!N1Y1=HV2VSD}=D zR0fc@OEa_}Zm~@%qbXn?+ST7Rk`?_iwzo*K8=j}pTAwU%@J(<19n$7XbEy`n)3N2L zU1c40pm?m^uefZ9e&D7ZUdezpL#rFd9SIfUzkjIEnN|+ML!T82+P&( z(%c>OzYgWyis&+C7NvwWM68D7M%zwZn>ptL1V`Obg^5aOCFdA)2V@i(7d$B=9&YDW zt|VJJW*uB5x1BvAwzAh_0Y=3-+$G*pRFM6(jH}29F>PrC1{%;s{3!H6dax&8kfz_1 z*P2d^4%BI|r7~xfy(PovH|aPn`U_SLF+3nt4xmQZZie)VMf&vUKc{}<<)&8A?uYp{ zurpoRZz`5vhsts)9E|SJpMj-JcXU=XGff0C&Qt!x--LLkeRFc_&-CUbxETE|%@2R8FZRWO1JIuuqncK+{ zWe;KX#-;eRK6MUqyMMezfde7Ci?SfZ2hl&NsiTY8g#FYr&mDjx@g~|7HAq`O7BlXt zO=MMcoW#xq4)eomKuf_6-BUftM#wN%CtfVt)5rga0qarPR&8`v$3T?_a(IRMj;I;I zJsq(_Hs&r_t(k1}K)i|>qVJG`eUUpOFm+rSe;LC!*@R;4GA5z-6Bi(#R#-fHbLu*s zxeWqGgyYKFNVSWm`-697fIrOiSTbF#(}GObnyAs#UthQY2UUUepOy1`a~b(D(A}_O zDu3dP=TvHn*I7nb7I8nr#oc~ALO}{ud#l_@Nx)^p@yYX5yCz#nPrT~?yO!H%gRRf@x z$#v+)V^aW<=g7zm!ylY%z}I@6q^M2?@cb!(MF!SBbxV6tr%;4gq@#k={uFY^R^)M;J^e4bm{&L4K52z+q(xm7ko2;L(MKd}b@ZOrI!v)m%4Kjv z(ce`iSvC^5>({ORmKx4P>`m2Al6zfF23ZAQ>=BCsX8#;n%p>jP$cpYpD39uRO^c_l z^~SQhTkv)Uw0afJNqDLw{)UCEE*f>@EF{Wf>ALbA)`bG~Yi)wjM|4h-cm|Tize!pE zHn6k0zUr`bgCE>pb<>xE!)uUrf~@c_l^T507GA$1s4|vfNhhU%)9J*MdJrMll|WIg zRlYaE?L`Aw4m|%K#%q=|AEfjvEhM+rHI!i7!7DFzdrV0K${TVrA`z)v+K6+4abY{@ z55zKXoVhMp5<(6%u&C_Sj2ReJmAA$>PYyM{BMsr*W>!~nt>1hTkkz4?m@LPhGd-_z zyBsaXiZQ>n+O{C)TiTzctU7|?T$9~?*K9EjO<_u4y?+zaJUV?Q; zCh0`9qjKIg^H0LlvV+2F5y6PHy0W_73S8$WnEY-wSqLVCBvS$~O*J-hf zgl<3`v`+fn!s{Qd`djJ_&WNJBL0d@>`A18UVyI*WazL=nl?c(@3U9T(M!JR5d#sc1 zUErk_;xCA$LM;MJW=W8^`D*tYqE}lAm|aOQ1kbB7Hu^B}9!(khVV$Nae_{y3v-!|n zpIsN-Uw2nHewTw`7&Au^qwGZqIL%B#My1vK%%lU$$l?*v%c5|W2_$xJ$1vb{U z{lm7PuogUH7`rz6A4lV^sc7Ra8M?R1u?`eahOE%oSVZOYe-VnW>pU6(k2R26#0{dB zy0l{CXU;mjnDz_Oy<{JV@4K5#~}Ciw%l9YSP2a|=!sbP=ZZXdg#ENUOuvBc*#S`=+i<=cQpU zp_|M;??|>n^fEfln~L#=$vj)ZQriF@?jOk2e0d4O8ns7D&xdBAukAK_D1H^K)hgJ@ zFEx#=c{k5hdJ>5rW}M?R$`TpvLR7w~9eIL(e(RX2#PXoQ&0anIA>jU`(k^%jrxx77(p8~E%o3Vy ziVPq|>|@zhp^dj9>g?Uo4=QrmC3An0GX{2%gRXuAL9O1ruOGTg?TMh9FcQzR&9U)} z(vSZE{0f=T7~zgyV9dnS4AW>8uQ)jy@gqckqem}a+IDIpR^i#Y2^TkP3(l3&_Qj{N zt}u!&TJ9sin287ViG;HVY)FYQ6&GBO{$8*2M1N9ode)o4*7Ev!mL* z+2Cn*`q-VB)(3JNv0Wx(KQqPrrOzhNd6Ro09Hd<^+AhRp^fJZ;q;oqp?9J-sfue6u zkvb-go*3agH#u?elMOe0*YHCx~*Dqj$6G1hfoZEn0 zkJtmDQtsyZN92iDYV#T|tDi{hrH8X9AbwIQHu$uqnG6j!nsfSWY26Wp@p2!vQ&dQd z=z|1EjlOyaFgv{a98mA_6~nbwOS z?6d^Zwe&dq$#md(%sR_$!jig>rhYe+li?{@dOx5ivJcxBX#BMw_pzVE zHEU`{7-!4R1vp66u|ahZnr)^fFwpsTr1?!3)i7S?$@p%hVo|Pw4!NB)y$=wwg?CI_ z$RmD#%Uy1aKwG&hC3m~3se@ci)_rLshJ7w+a4}$=bCKTazPQ%%Kkst3GXxr*vfPvl zw7j2nwA>+Ix4CZj75 zvin3RiuJSZ86JL@l&AAugPell=9jr;L{Eg~Gf;?Or~(+=*6Jnfh&5;Q^}4!ec*5@u zp4EZSOJ&PAX9B)@JKnaPB+Mf>$o!EPt1ANR5sk~cZp%7Lgxae=OF(gLZ{EG~~ zf23B+?qi-xRZlS!G)EQOekxcH`@sIRDAMdS?X@L8(6L$Q7#nv-FA;W;-F==O)7=KGlu>Q0PzW6jpbz zB8=b`>Eshj7+m%*N9P3U+!a#vai4wVRyS~cO6rQHvS>lrkXRJ+l*(DdC)(tIBi1X~Iusl3?zIA_j*s9U-r zV*+s%KS}afg()U9a@J(r1Kg{|-;dS;lwB%Pm|;G2gyo=c)SWi_g^n$4pEfQX-sil+ z@Xhe6-_2;xsZ~=%g%kNLhkGmHK6wHWs>?O}s$Cpm3-G#Mff!xXse&!Q#?Q~ehC$87 z4{4=rNB8VTG4U6;E%G3}29#VMD#3<-hh1aHuTNFE^<|IY%v&FEkOw0cNBv?5R@G@# zCJp>UY^k|!U%QNZ+YzrFfXtcx?K*X11$mX`6@3{4XKt)qfS0Mc`y8*slFUDCH5W-9 za-`37@GWF_^KN5WG;qZ-xV|@J3@)*c@47MHm@H_(en)8VJJt8QsImp85GkmXO;M;Z z&(_I~FI1u{PnGH&n+53!lHT`dba^;HkjnnnnzOrxtwvh>|2%eV6|UR`D8e^rGolGI z?Ksz)G>wM21CTqJzv0I2leFpT+I^j=0R|cB3^tHQ#Q?h^{tyPPo2k_-Aj*y@Eib0f z>Pp?umG9@)F#hnRKVrET)<8!)>Uuv+7E^m5bx9{s$~6)S{fAkhS$@KH{E%|LPtiP- zdFx8u|0H&LS^LuDZWa|7k?lT*4l5)Vact5^iN^i*iy}1Oi|A{vTk*AegRJoY{TgGw z?pMGUKrce(L_1BN(uy|UU``p*dQ4;Jrpr=Ul=(f$@T+v|3u!NKjQmjzR~tG`hAKDs zlwV^Vz5&9;NV=Bt^5ockkf`)IkHRs6O;)#dC;x6ys!doO`k3F$!)t|!^bvvsPh2lp zOMjy_&paMgup~?3?Vzod!V^=mdI!xK1oih1E9YfUw|;O7`vTcZIm6*ZIKYY13LW;tTW_g{SDZEHuKh)-_+Z#(bC5 z1V_!_^nOwE1#()?oq%`29-0l;DgJ&U~2OR=M4|0!g$4Uj7bCQPK%hO6JK9(Axq-uq<3{h9_E1_s5 zkH>~(12A`=#$#Pgn(BW6Wo&|W2BfJj<_2FD7;{h8x{+&43oN;ZMSDJS>3gV*;?+Qk zwSw&x6-1nrQJW*&i|(j$qQ4vXXBlrK^yNZ_wKKboEr2i}YV@!7MXLYp1q(sLWYGVe zUj}Ilw6$5t#)oz-R7r-|Ac7ce*=`GR$8w8KOV2Tu6x9WvBNi|@whM&Mgl(9tyt-DX zWvu}Bmoa{?7{~dBZ>D*BA|!zE^t77^0j&eFL%+qc;{fDqX8`Stpez z`1M333Ci`J`4N3+CjXpm*dF=;Gn&P$s8ZWnxt6X*&1Q0bSE?59HSmG*gN7%n1&r8p znls2$Y_UV8Bl84$YVEj9SFX<^jdcg80Hpg%azzezGYCb5sV=vtwq_m#7uFxr<`&-` z(&C{>c4juXuG#v2?u&grS?otL6R_XiP?xQB%9M^X92bA=FKA;Dvla|pLzbFvs(!qb zrB-Ey@`dLBrS9?Q$Qx~@?2KM^(v4AC$PP^o`yFP^ND{ZdNG9=w>F zG3}lLA~=yUC*o{2J2*?cbT^5h#k#*-R{-91$`ETe&_V2Y$yCFQKdhu^*O3{Vl4pvc zybSG6xEr&p)diw0638{wJ($NVn7lxh5uOUTTmcr7w(2X&>nmMu{H;M|4j!TKM2WAy~LYA-g(T;pi2 z+Lx6tk;*k2b$(eb4pNwet2I81+o|-AYQ)>fZ%cl~r%U=>t*_|#+YsV3D^vvRT4j0D z;Eql)O&fmD+=7H!+0hhmN+^!KkCsTF(k3JHzcp=Z$L&|Okp2Q3Lx}#wyM*{UW{N{* z@?H2}u6n%aO;7GB5In#*AOvwi9%M@O&*VnZbO*-#S-mN01v0Awsen~WtC-Bpl3_qE zTan60JqL_iHW+>({pJchg-o4LJ}aiAIQj?|A=9F*AtX%>k-Qyxy~yyX4+u3(-2HZF z+8}!~aKvic6CSDBqK_@JSQ~zV*>?E~Y{+y?lDX7|Hxl_EQC7Y_hPG*&>$MsNnUAtT zk1h7Shyofo&azsHugWHZ&m}Y@l7~7nq(W;>&>9GOGWm$=UABHh5o!|~3d|t$`2^L# znC9WLuf*55q6LW8$cZ*CY<;-!Ntd((ZuJ+ zmJM3*QyCHuS$Cuhh}=XPnrrt#AE*BMX|q+WYU*CU&3^WJ8PB}HQnZhtnk*Gnu9PL( zv75S2JasKQ2Uv?F2iw}SY{#5b{Fh(Ou!lTUXNFXrD?kW^m0>(*DLg2NDFlKn+c{I% zu?uE+MB78ddym+&Fl{Z-HKwmb*dFjUbezko@ovb^H)Ww}`T9T;OJ)NWGoyeYe(Ze9 z1MZmHL?n6ycD^ZILN1B0H^#9G;%CrW$}+qOI{Atv4#)1q;(>Cor(n3xGXU@s={M7VtjwG$?^E~hA?fmQ^;!gQroF?^3@n3navsZT) zP2?Qbu&pPe*18zb{QPHg7t<(K;rG(a zcdR&w0-&b(#u~ALczpa&)dKtl&Jv{q+Hp1sa(!QKNx4TEFk{zm^)#E4BI|+JMO(F24Sdyd0HQh54E`xYy!#R*_lf$$ zbixUeC8c|&DUYXBh9nYBcQdAC}LN^a_=(6@B9vOi*~`Ja{0rq{O~K>&o9Zr$TcIs0mdha z6H^1Teo5zl z+0t@(Vv~T$nvd-FW64|xT>)YuC4ATfqQ3*YtWE5p>>Eyo0!(*+g>G4LZHuhLby{hJ zjDH%KhbnU`%)GH{GVG0G`QxLoC?tVApD}=1X?wu%3#TVONPC7kinz{NrwDD*B}%;- zrpHSntzC!--PlI*5JP&u%d*=;pI|cGq~}?@$W*On*3mS_IuFQh3XfT3eni)wB4!z| zRX~Sr1l6~2`p<_`<@CYrR{YL@IxL+*&NbN$EgUTM7ha&P7VAHizkbM*7zBs~oP>Ur z6SFK=yz?CZW_iq2>#iQ3^ptIZJPYC%{dL(uXVJQ(TP$n)NAM3vT;q7I@T(B=3n|=i zg8u|Nb`TEy<@XJi{TIH4ynE|<+AJqtvE|_t?+*)eFUhpW+ZN`kxgN`lHWQ+(#o7_} zM~iJlA_g^Mn_I05@niU*Y=Ud}amPmI{RxSrd{Up_6%AVtnJ#VPi{F+C{%&GB^?^n^ z0$=4U(_M+5U-YA+?TlrETw1AGc@$OEVSXndn1T6>^lqkc7w{)UhnOCy^Af)qT!@C7oq$?hrH*@3nYTI?GNOei(fUrni$9)8VGh zPTU9acJvy}c@!f5s$rcT+jt&z*kY(9`Y!$qWM#~>^RI9h4$xtX^;sERzD&U0h1WcB390?V&wcI) z#1-TU3w?sSY8?I#TlF#D#LD<$19(XxiVwuQY6SmDmwB-)YA7>mU~=GDxB1P)C&E$k z&b}Pvg))KIwjoLIEE&HSeS()p|6v&Scp1Kk4d;Z+wKNy!_L`LBaiF|(N(b}C(nD@y zYfu0}wc&Aj>$85vgBm{#HkxsSqUb0JLT;ZDM}rHr=4 zRcDR;@qA_(S`eEcbVmKX7?1+ (c@`4e@$RjzBs4n0w25+5ix ziVu~d4Dae4D>L90|LN@v-?>d@TUDJ_eykZZF?cFXL9jOZdJ^%xr|SP2a{j?G{81Yt za(>t_O3}R({MErz{K#oO;xD!e{^A)k8_17uKu05ATDsDkV=1nDoU64Un^2fAsa*)T z%WHFR3H_a9xaH`a^eD=&X1c0RMhLIxM`c^V9jI?5$B7V=+bn+cNh$9u%W{+Vp!se2 z$@uS9JlinSm2;hPhid3ihQ#IB*JLxgOx)IpdnoXut2B&!-pDoC$a_|BV znb)VOoR{9Jx+tI*oER)WrZc?(%GGPEW9V?v4{tnbjb__i(f+CdTRdWjHD6y}QE3lH z9+%}}mrQ@>UFyYcLA=bhHi7>gC{!~UCT&Ap&VzO^ygv;zLE>ArDlE{1;m-+%(LiLO z5N8G+_{+nw)i1zN$@pf~BMIYWhoL+_W)#WSM7fkFILfH9R$!Y|t*$K1U`*cE@6fz8 z9h>8;ERy7xB{B3I+>27C*UT8}NkX;;s|;IXqHNKlHqtB2mB6 zgj!m#!GNoAdtp}<;GL$hL24hHa&*mjRExU04`Z~poSei=@&UgO$JUlB5z%^U>L4jX z>KQz#It~o17cYOy2?0ta&IUV!_q5BTIDs24(e3No$@X>-`(sdO47^Xnd-$SyF0L(C z6H~On94URtQ4(3@u;27YkOai%gGJNzfh2*-TM3V|wzIFxpIYZcjPJ5?_-doly!(6a zMt^4C_o=!Z+j)Az5e9)aCcK;ck~URe z^)dHbDd9VcFUxsZy^zM@j2crKti!)=L<8=mGDrO>^jNv;PvrC*UBaVt@qG9%!n6gv z_usETeeT_0fnXhwgH@~f$nX4v@WsM8?S|o>1(DfvJm7PmKsYzPF+B9Ob<}VN5>cXN zW69M|MLz`U|7K+h?2iz}%di&Xuq$UTN1~!}XrTu21VhJQa~G1rhn!~rjo3AlPs<)C z`g9o+LyKVHPY#DYIj;2t$7@1sg80MKQrpMgLdOhqPCSn_Yy4Bc7|f4tqiU2Pg4guh zkU`+&_&V?^W0Wbe8NOr+a2oq2E0N%<=d|y?9IBr3IXR1MitXM5I}d|AqaIUN!+^qDD4@2PFo8!r)@V*i z$1A}d84DvOTvX_xocML($hY0!?LU~OUGHHg@*fHIZpE9c^z@iR?1P+NfFGK@Hk5Sa z%j$kAza7Cn#IY`*&&HIY`@#>Ib^&rm7cP>4TPPDJ$nf;e_`cg_azMK9E`Jnuf%vkF z(?kulGy`#O!+9YB%6~fRK138uzPIr8;K1Ee%z@VE%5?tK;7dSXxv{=wveB6G2u^Z0 z)H{hXnb6%D>+I!@>^5Jw_APKA8NQl3sdDkz9 zY&#F%Ucg_OY}_iY^?7H2{o-S#6Am+T?;F;d9!R7uoI`PuR@?B1anz(cPEOSP28efK zVA!UD3(gL{)_ZGUz}VHP#v^)sLvi$z>`xi7!e z1w30egB-2qglW1+&W1HChL!SP61nn~wKSlcP);L-^-BM&|Eb%5_ju=XO|)J5|leN0AgnyS@W zchJOs1D;vCsHG;?StdtS_J#?jlP_ds->9668p^)Lb~+DMpI=aZ!CLGFzB&u% zQBKr*@OQ!^tk^PQ2>l&h$ao&EWQ^>u$pgp~$;Y896ZqzolkO4%alpI*-E!G#N?sQhy*9v%so+dV5}fTbLR@y88m_rn#-%P_?7v7nyDf0<$(~ zQ>3RhwgOg&-i=Dm3Wo6}t@}Yfp1s&KL=iL**1XlEdVfIu2YyRepZVrAR>rZCgIIu= zG?Vkd3QFE0o^6xiYA>(4K0yir{`U=LdmdPC5}S;ibPB{yzN!F2`%;radq1Zj=1s;J_ zZ_0&YeBa6~pChw%8$Sii(ebT5!J|9f2OdziRQ|Y&{a5hMg#T2j;|tSBp(qmWoqA&; z+fW;y6Lpfogx%&`%vLr}&%#EQnZD075}(q+{m0_Bn}7HLPY|nuXS`(1&-%@~hCsk4 zBXCZ2Y^dq81io3mhMcYZy)p|x`bdS7-=BGFf}#b?n1LVuo?u$2^R$Y%!*mK5r&%Z-2{5~A*UN$*G zdQ&Y8KhF#OreaC6)eHF{px5vbR&t#K>-BQ}k65@)aEutmN~dagicX|VQBz*+lQJ|? zZD_$BfDTg2w_O!D37#ISX!3a9ee5Bg)2$CRd4cN;|LfDtUJM=o(-I6^c7Z8fkJGl`i|P}AIlG=$ad#x47N zm&0$GPie7R6FkZ~@~{$kwrP60B~)-ru%ROZWx8Z?HbpT!ETiT?{1bzlX16k2pH~_D z1k+NvO=#CDo0&5L0b}=k<=c6g>WPZVh^?0o}sB=&s7nLbOT(2Zl>(3gZ(#;8$< zgJd_}k7jRrmpL-@lkr)E;D@9=&K;1jHPvMo8M8j*BFz&iBM!rktXnMme`HLIxjBxn zxl9oHKj*>zv$7~wX%ii_EkTy*Y8dw%DZ$BH0T`;ENvm}^T{o&_^>$Y&ko9GB;lp9w zWv5F;=9c_v{t9rVfm&@PzP>&YDNO75@2%hi_E#jQDmT7XNE$y2o4CYzn-$l3ukibb z>>r7C4v&QofeooQa}1nV#tNTp?2%(bQlHtEB1QE@er2qFFtih?N(td;Wor^CeZ{{) zjGDn?7d(#KKZb?Ja*wi9blDI{<+#6P&6qy(VCz?Z#M90j z5}`D9Fk%sr9nPJc_Lqe|tmL#;LH@D<59b;aVLxppYO?zLgbu!#SLSQ3bM%-dMG)hN@Lrto-|10Uwf;gS54~mGhc?oFoXT)}D`;jU1ozopZKx*&BS{i%b@V@@<2mgJQw}Vm3?A-yq=@=ivb&* zNEgT57JLO0i@4Iy8$-bD=H$fe=|_>I8SB@W#L4hQRiJ1qq9f&<(dtf=$8s#gj=wP% zkDw_M(lzlBoinedeGzeZhLu2Pd?G#3_;5B)Y3wH#3Z#`R@%d8OB~GcW61I^a zMC#a3vgy2x=E-l)6n6nNR^A;9vb$W9Enu4F34Q3$E!K+ z9zApE34piAEudp+<=Re&xKV%!uivD4oXdD7&9OpHv;zS5Q$`21#1rVadM)hYak;D( ze|(x2yMR`crak<9u^G=Ejz0dd%Z92)h?kFRY9V+q+?1Ri5*Q3C4O*ooAZ%o_vi~Rv z*tX)G`O|nAY|Fz@zlR9)PnJ3q->XQp9DtXHFLW-8Chw`y#QrRXPTt3LMzH=pqOd{) z`oXZ!O6Xhhc^Fh29@vf2EbwS(uCNwIJsxJv+D-up!cq}PP;GSUBo+QyAoGg2FKr#? zB%8+-ucqN+3z78vjNEILUkGEN-+|-Jv$kUt=Y7~aY*}xP)h*#PA{2iz4FbpFim$$I z7MhMnan)KZYjD9Dc6W#B@{cz#WeA8A}P{e0S0?L~e39+#u+F-i~ z5T|3AX|u=C_}u5f@o^9HL%eN<+g}qEr#22#V6jcA%YZOeIi|srmy%;BNTr`$Q?@53 zBtt?vQ*aJ~-YEvPY>EONYAZ+LTWqewncKys;}l8dF*^0i&xoA%tCx=t>tt2emj|0o zl`UyW*zFPXBF4Q(js4~qNNqdnym^pvIetd=^bK9j7y-xe&%*Tn9^$|32CIEe>(?N> ztvUdk`sh9kdFc29dFPhS|5MSqMm2S93%C_eX|G^gamRuR&7P$ zv>FhBq?Te7BoTS#L9!K3OI0AJQbYw3A5b(rQh5auLU>dV0tDp|AS3}Jgb>0e33+EH zcl&Su*kg^c=U!`#HRhb_`>yg9ES1{>%g0^k%8Uw1Y*%vP+-rb$__i4E_(Z@#Qb@@Ws5ki@V4FSUZcS?7Ct8 zD({7(F13ttLlY~I&DHQt4J@@~@dsu&Gf4-8Fz&eC$r~aUCwR`zs*8R9%|T@RcgXi! zMsx(rd}1WfN&${-hR0T|7gUzLHTwz;XkPE=3t*HupE$$02QO@oTiKzAMBWoljf^N7TuW{_xlKo4R%?9H?_tlH)jJ zKnFmLT`1dK30SINRK%}6XI=t{%2!sIhe=E}WlLv%iHo+j9|0Z~fwF?8Yg~1lshOQX z`AXxxpnSIc#B#$3`JD0R=x?RM8Z2av#9RR)__W^bC@)T zs}f|BKszO?#xJ#XS3U11mvd@x>z08_O6BUU}w(q%dWKW!*s%+*p|^w;`^^MZ{<_LR=3kcJ!3 zpQXjkWxuB_mc*wkufKOx+!i4~N%rpsd*H+JQckh*m~U20>bdX}f3n#C;tdoA`oaoN zTDI{trB*E@E1FxcaC09XkXD%`lw*!d(9w>9%(rD2UtCqz5L+War2?1`iSIN&mory`qh!2z&Z_Y8bOK5>DY}Lyy zW_ZR;>z0Ga$Wo>DuF%N1>}x8t>|^YCw7xHTD-?nmV`Ro@q9c!?J~zJI`cp?Cu-14cP2B~U7vATrV{SJoX6FOl1U!zB!T7OJTo_r5Ul&TY+ zxf=WQVKa4;nWAq{m_XnY34TmzaDMNN(*S?sU8-#$jOmLK?AEkIJaxp=+3LVAnOD_k zobQIO1di@n5-2A4miif6;=VqJm@aJ+OyOOQ1rEWv*S-3h6UJ$6j{!CU6Jwwl?JK=m|?hBLyr7>e`wYQ%v$>2W&X?V|9JX+Kht?9;tp#)mv@HgpL=}GQ1Pkp*INJ^ z{H;L|wi{~N-qp)M=S&^M_D0tDM5lMmM%Lhvw`SqWiE#fJVN!RkH{6Aw z&F(gZ^;DUo=(p6sN9|s_F`uhKH0mnlEoBR-s9d>!h!TyNc6`A1;GQo7+}`b5Gv2p| z#BE8{Vsqz_7f0hZxLKWXatdufVX>tO54OE%Hmkyn9q(nmWQ=5ro71LwION29VCQ?O z6ij{gl2{}j%sbux2HtEP0AiA3=RKH|kGVed_tfXS0Au|4F3CiE!5=X`G1KD?C+fAl z+)qGTm9ku~ZuSjnSSAN9G#4sMGUrO|Z=y*s#k1RCTkSYMjWm0WW1txpPICmBr$om& zJeYbTDEv7xY38;YDdV*V#}g$1Rf`+8eE=q#d$ z9UuB2uabWzF$}0?%Ifci4Q-vGc>R(d&b#OPl2dT;$SvKpzS~=={(zx$?WmxEhhIW~ zez_CIp*R_Q-XHl=Np-}T{t{3PwF_QViBWC}A$BRP-*~sge7S$2;kgfkW9xS*tDeWW z3lB{DS8ffbsgK+YedSWu?T#F3``tY?r23J*o&C18yyO~zB~w$1-2R%XR&j?PyXhg| zl4JXZ$=k>u13WtSTM3Qw{@9E}?J*Y4Sk9E~&nG#4iq#uj6Pb?J=e!i-SUVV*WeU5% z*rq$aYszbaX2!EboDjJ?x>>T%myALjOPQ5w z7j~+{0EzO}1XYoCq%(?k-Nba<$HkbjE_u&T&46QPS9;#zsxtRflZVN9#6vk5Rsx75 z_w0xiK^K?c{Tr@-E1~5mL=Kx6ZLs)0R(6zdwHLRvB^Im2{=@0(5MEByd*Z;K> z4AKNfzUFT}Jig0#@;9x6wIl0)6?Hu^sMo`T@h>9C4lr~?JKWLh+x5L;oLN^ZDf#># zI3(s;X65>OM%O0$XOhd?n6$;qB0#??myTOmp-azDIcL#rc@a3b2L^}#=0^1BQssKt zHg@Kr`b=(wK13T9(a$()E6=z9cm=L$pQt8)C@6tJ89WYvabUVTdXrEt_T7pz43wUO ziE1Z(`ricF2;h%y8|cGfWnkxi0%e`=IoGwp@J==4`yGHwUcY0qZMKHm4vqJ@&au4fXQ>gfZ!9YhR$3}pvu_{P9v!#N^M3ZcZZXEf;twhdqUXj!5)ff z^}DybGkI2GSJu;Q?$nTnnp+>_(FI+@ z*4_hD;Ol6+$_Kd~c8lfSXy1s0zE%IuL1-%h<);$eUQ^^ko|J5p;%W-pWfyJaH5zPqV;Ow<65n>PfdHEpHE1#Rbz)wh&`)KAvi;ZDsSr ziOcoDYnnkv0Xa+0h!qz~%`d9<7wCW|0}o^<;>OC|(q*H8yzdrOqb49Gk zDHvPaTspv;%B0|KxM+QQdRCX7ymK+q2u2>@y0;|H(Q9{-&6D2f?Vfl3uphusV)dhF zg`57WU6l0PnnVW6q(<9)u)tmf1z(S=b#ts+hGiUUv0v`AMf)KTR0$;82rI@((s{>Y zRWOR3%toS+2UIH-(ld&Gl!d=Yo3JIC>9r7llJE?&oQ5V_NS5;AY)vh8VWd&T-9!?t z+ZhrS-(C+tY7%lC5KDPbR|CB$$sW)^i|}g-4)p?-F-2k|OpM^Rva_{1tZA4rP<;@n zodJ@8`GzC?_s!;aE3mQ%V*7fVHBC-UNisVcT?Z$n3-~&L{3NBZfgWnM@vWz^sGsDF zC#uFYL>Y`Z&^5%0QWngrQ)O7oG$*HPN*}AUw5|6so;|MfYkw&3z%zOqot+I(BmUyW zB=x_~o_<8_{V z-}P@n3XrVFOWU+JLJojs6CUE?&{hbpXfb)KN>0u!LkL5Q>!bXcI?UIroSbJI5!Pbi ztVt&rqL(&?EUsQ%Yd@GQW5Qn;dD3iYlaiidPENSa7x5aD9Q)~b6j5$8wyoTQ4C0%m zO|>)6fCJFv9z?QUiDV?^idHaYTcZdI-NCBqLHLz2zrQ#gvq;pL_;w+YB6{e5DyIVL z0Huuh*v_C-JU2m7w_LLl3V6+bHBQ7vbP_4N<;as+ih{NHW@V#w#T(%T-E47BMkx6G za%4o?3Ya0Dcnp1z&Qm%KZ7Us6>ljclx5ATmeo>LqAAbVx)r~;8RL^UfzN;#GeN+QC zid~<^-i1;yGz;0F=%6f^kCdh(cG+bh)J&vKR)@xxmWv17SkvOD1FIn?I-BwK(-SVS z;TeDBGSryRXHLig>czXZ?ey|4tr5?J1Y5PsqVs}my_}OX(MYZXc5wS!@mX@IE-=WR zz;m6>*$LLPjy4q+I67we0m0m(1F^enn$MGUWM8VJTVeKpSU`IkM3Au@| zLP~Pv26a3(AJE!VlcEE<$rglnaKRj~r5j0#?E6^Xqvq!C102 z>iT-7k?1lVZz-=K&6zE>Wosn|`{Sh@@ES_Pywi<0Lwv_OCih=!(_Cevogjw|)VR$q zhAdb-BM9DieI_}1zCj>Y-H;^9xHP|;bkP?T+0(&}&oHs3_dfWA_XXfDcEwJxuMgga z7Dd@bJf(K6&2qZc{g;ysM^J{3U+1mTMXUM*owv??T0*Lg90xOojRkuU@bZucYHzTw zFSkR65+o$u*sYBf~~s zlW>e^IP`1rQgqM^5lc&jC-uNUHZ+-zDfA=2oi~i+`5=^A+erJB#ijZ8nPo_HY`Ul} z5kJX1+k)pMiSVlWgpplZ&lO%`{QH1{Z|Q%vRY>0LC=f~VmR)W}isAMENr426=3zEn zUsNgOD%~}p4M{;ohhwNV6o1?l z2RdJjR3F=6k?{>0_yWYHjU80F+AQCR%I$tB#Zz?kX`$f1p`lXWTt;}!!tv1!dN%!> zdUeDb-$`dXZ{3s#v!Ia{StwC1%rF)$tg_UjjTO9q2pU7wxtR AI chat guidance,一键生成 > 大模型对话引导助手,init.R +Decision Boundary (2 vars),决策边界(两变量),svm_ui.R +Support Vectors & Margin(2 vars),支持向量与间隔(两变量),svm_ui.R diff --git a/radiant.model/DESCRIPTION b/radiant.model/DESCRIPTION index 5c0210b..ac40223 100644 --- a/radiant.model/DESCRIPTION +++ b/radiant.model/DESCRIPTION @@ -1,57 +1,58 @@ -Package: radiant.model -Type: Package -Title: Model Menu for Radiant: Business Analytics using R and Shiny -Version: 1.6.7 -Date: 2024-10-7 -Authors@R: person("Vincent", "Nijs", , "radiant@rady.ucsd.edu", c("aut", "cre")) -Description: The Radiant Model menu includes interfaces for linear and logistic - regression, naive Bayes, neural networks, classification and regression trees, - model evaluation, collaborative filtering, decision analysis, and simulation. - The application extends the functionality in 'radiant.data'. -Depends: - R (>= 4.3.0), - radiant.data (>= 1.6.6) -Imports: - radiant.basics (>= 1.6.6), - shiny (>= 1.8.1), - nnet (>= 7.3.12), - NeuralNetTools (>= 1.5.1), - sandwich (>= 2.3.4), - car (>= 2.1.3), - ggplot2 (>= 3.4.2), - scales (>= 1.2.1), - data.tree (>= 0.7.4), - stringr (>= 1.1.0), - lubridate (>= 1.7.2), - tidyr (>= 0.8.2), - dplyr (>= 1.1.2), - tidyselect (>= 1.2.0), - rlang (>= 0.4.10), - magrittr (>= 1.5), - DiagrammeR (>= 1.0.9), - import (>= 1.1.0), - psych (>= 1.8.4), - e1071 (>= 1.6.8), - rpart (>= 4.1.11), - ggrepel (>= 0.8), - broom (>= 0.7.0), - patchwork (>= 1.0.0), - ranger (>= 0.11.2), - xgboost (>= 1.6.0.1), - pdp (>= 0.8.1), - vip (>= 0.3.2), - stringi, - yaml, - shiny.i18n -Suggests: - testthat (>= 2.0.0), - pkgdown (>= 1.1.0) -URL: https://github.com/radiant-rstats/radiant.model/, - https://radiant-rstats.github.io/radiant.model/, - https://radiant-rstats.github.io/docs/ -BugReports: https://github.com/radiant-rstats/radiant.model/issues/ -License: AGPL-3 | file LICENSE -LazyData: true -Encoding: UTF-8 -Language: en-US -RoxygenNote: 7.3.2 +Package: radiant.model +Type: Package +Title: Model Menu for Radiant: Business Analytics using R and Shiny +Version: 1.6.7 +Date: 2024-10-7 +Authors@R: person("Vincent", "Nijs", , "radiant@rady.ucsd.edu", c("aut", "cre")) +Description: The Radiant Model menu includes interfaces for linear and logistic + regression, naive Bayes, neural networks, classification and regression trees, + model evaluation, collaborative filtering, decision analysis, and simulation. + The application extends the functionality in 'radiant.data'. +Depends: + R (>= 4.3.0), + radiant.data (>= 1.6.6) +Imports: + radiant.basics (>= 1.6.6), + shiny (>= 1.8.1), + nnet (>= 7.3.12), + NeuralNetTools (>= 1.5.1), + sandwich (>= 2.3.4), + car (>= 2.1.3), + ggplot2 (>= 3.4.2), + scales (>= 1.2.1), + data.tree (>= 0.7.4), + stringr (>= 1.1.0), + lubridate (>= 1.7.2), + tidyr (>= 0.8.2), + dplyr (>= 1.1.2), + tidyselect (>= 1.2.0), + rlang (>= 0.4.10), + magrittr (>= 1.5), + DiagrammeR (>= 1.0.9), + import (>= 1.1.0), + psych (>= 1.8.4), + e1071 (>= 1.6.8), + rpart (>= 4.1.11), + ggrepel (>= 0.8), + broom (>= 0.7.0), + patchwork (>= 1.0.0), + ranger (>= 0.11.2), + xgboost (>= 1.6.0.1), + pdp (>= 0.8.1), + vip (>= 0.3.2), + stringi, + yaml, + survminer, + shiny.i18n +Suggests: + testthat (>= 2.0.0), + pkgdown (>= 1.1.0) +URL: https://github.com/radiant-rstats/radiant.model/, + https://radiant-rstats.github.io/radiant.model/, + https://radiant-rstats.github.io/docs/ +BugReports: https://github.com/radiant-rstats/radiant.model/issues/ +License: AGPL-3 | file LICENSE +LazyData: true +Encoding: UTF-8 +Language: en-US +RoxygenNote: 7.3.2 diff --git a/radiant.model/NAMESPACE b/radiant.model/NAMESPACE index 2dbca83..d1cd237 100644 --- a/radiant.model/NAMESPACE +++ b/radiant.model/NAMESPACE @@ -20,6 +20,7 @@ S3method(plot,repeater) S3method(plot,rforest) S3method(plot,rforest.predict) S3method(plot,simulater) +S3method(plot,svm) S3method(plot,uplift) S3method(predict,coxp) S3method(predict,crtree) @@ -84,6 +85,7 @@ export(cv.crtree) export(cv.gbt) export(cv.nn) export(cv.rforest) +export(cv.svm) export(dtree) export(dtree_parser) export(evalbin) diff --git a/radiant.model/R/coxp.R b/radiant.model/R/coxp.R index cc51f4a..4b010a9 100644 --- a/radiant.model/R/coxp.R +++ b/radiant.model/R/coxp.R @@ -15,8 +15,6 @@ coxp <- function(dataset, if (!requireNamespace("survival", quietly = TRUE)) stop("survival package is required but not installed.") - attachNamespace("survival") - on.exit(detach("package:survival"), add = TRUE) ## ---- 公式入口 ---------------------------------------------------------- if (!missing(form)) { diff --git a/radiant.model/R/svm.R b/radiant.model/R/svm.R index b4b3d85..cadd0dc 100644 --- a/radiant.model/R/svm.R +++ b/radiant.model/R/svm.R @@ -1,122 +1,692 @@ -#' Support Vector Machine using e1071 -#' +#' Support Vector Machine #' @export svm <- function(dataset, rvar, evar, type = "classification", lev = "", - kernel = "radial", cost = 1, gamma = "auto", - degree = 3, coef0 = 0, nu = 0.5, epsilon = 0.1, - probability = FALSE, wts = "None", seed = 1234, - check = NULL, form, data_filter = "", arr = "", rows = NULL, - envir = parent.frame()) { + kernel = "radial", cost = 1, gamma = 1, wts = "None", + seed = NA, check = "standardize", + form, data_filter = "", arr = "", + rows = NULL, envir = parent.frame()) { - ## ---- 公式入口 ---------------------------------------------------------- - if (!missing(form)) { - form <- as.formula(format(form)) - vars <- all.vars(form) - rvar <- vars[1] - evar <- vars[-1] + ## ---- 参数合法性检查(SVM特有) ---- + valid_kernels <- c("linear", "radial", "poly", "sigmoid") + if (!kernel %in% valid_kernels) { + return(paste0("Kernel must be one of: ", paste(valid_kernels, collapse = ", ")) %>% + add_class("svm")) + } + if (is.empty(cost) || cost <= 0) { + return("Cost should be greater than 0." %>% add_class("svm")) + } + if (is.empty(gamma) || gamma <= 0) { + return("Gamma should be greater than 0." %>% add_class("svm")) + } + if (rvar %in% evar) { + return("Response variable contained in the set of explanatory variables.\nPlease update model specification." %>% + add_class("svm")) } - ## ---- 基础检查 ---------------------------------------------------------- - if (rvar %in% evar) - return("Response variable contained in explanatory variables" %>% add_class("svm")) - + ## ---- 1. 权重变量处理 ---- vars <- c(rvar, evar) - if (is.empty(wts, "None")) { + wtsname <- NULL + if (wts == "None" || is.empty(wts)) { wts <- NULL - } else { - vars <- c(vars, wts) + } else if (is_string(wts)) { + wtsname <- wts + vars <- c(rvar, evar, wtsname) } - ## ---- 数据提取 ---------------------------------------------------------- + ## ---- 2. 数据集筛选与标准化 ---- df_name <- if (is_string(dataset)) dataset else deparse(substitute(dataset)) dataset <- get_data(dataset, vars, filt = data_filter, arr = arr, rows = rows, envir = envir) - if (!is.empty(wts)) { - wts_vec <- dataset[[wts]] - dataset <- select_at(dataset, setdiff(colnames(dataset), wts)) - } else { - wts_vec <- NULL + if ("standardize" %in% check) { + dataset <- scale_df(dataset) } - rv <- dataset[[rvar]] + ## ---- 3. 分类任务的响应变量(转为因子) ---- if (type == "classification") { - if (lev == "") lev <- levels(as.factor(rv))[1] - dataset[[rvar]] <- factor(dataset[[rvar]] == lev, levels = c(TRUE, FALSE)) - } - - ## ---- 标准化(占位) ---------------------------------------------------- - if ("standardize" %in% check) dataset <- scale_df(dataset, wts = wts_vec) - - ## ---- 构造公式 ---------------------------------------------------------- - if (missing(form)) form <- as.formula(paste(rvar, "~ .")) - - ## ---- 设定种子 ---------------------------------------------------------- - seed <- gsub("[^0-9]", "", seed) - if (!is.empty(seed)) set.seed(as.integer(seed)) - - ## ---- 调 e1071::svm ----------------------------------------------------- - svm_call <- list( - formula = form, - data = dataset, - type = ifelse(type == "classification", "C-classification", "eps-regression"), - kernel = kernel, - cost = cost, - gamma = if (gamma == "auto") 1 / ncol(select(dataset, -rvar)) else as.numeric(gamma), - degree = degree, - coef0 = coef0, - nu = nu, - epsilon = epsilon, - probability = probability, - weights = wts_vec, - fitted = TRUE + dataset[[rvar]] <- as.factor(dataset[[rvar]]) + if (lev == "") { + lev <- levels(dataset[[rvar]])[1] + } + } + + ## ---- 4. 构建SVM训练参数 ---- + if (missing(form)) { + form <- as.formula(paste(rvar, "~ .")) + } + weights_vec <- if (!is.null(wtsname)) dataset[[wtsname]] else NULL + + svm_input <- list( + formula = form, + data = dataset, + kernel = kernel, + cost = cost, + gamma = gamma, + weights = weights_vec, + type = ifelse(type == "classification", "C-classification", "eps-regression"), + na.action = na.omit, + scale = FALSE, + probability = (type == "classification") ) - model <- do.call(e1071::svm, svm_call) - - ## ---- 打包返回 ---------------------------------------------------------- - out <- as.list(environment()) - out$model <- model - out$df_name <- df_name - out$type <- type - out$lev <- if (type == "classification") lev else NULL - out$check <- check - add_class(out, c("svm", "model")) + + if (!is.na(seed)) set.seed(seed) + + ## ---- 6. 训练模型 ---- + model <- do.call(e1071::svm, svm_input) + + ## ---- 7. 附加关键信息 ---- + model$df_name <- df_name + model$rvar <- rvar + model$evar <- evar + model$type <- type + model$lev <- lev + model$wtsname <- wtsname + model$seed <- seed + model$cost <- cost + model$gamma <- gamma + model$kernel <- kernel + + as.list(environment()) %>% add_class(c("svm", "model")) } -#' Summary method +#' Center or standardize variables in a data frame #' @export -summary.svm <- function(object, ...) { +scale_df <- function(dataset, center = TRUE, scale = TRUE, + sf = 2, wts = NULL, calc = TRUE) { + isNum <- sapply(dataset, function(x) is.numeric(x)) + if (length(isNum) == 0 || sum(isNum) == 0) { + return(dataset) + } + cn <- names(isNum)[isNum] # 数值变量列名 + descr <- attr(dataset, "description") # 保留原描述属性 + + if (calc) { + # 计算均值(忽略NA) + ms <- sapply(dataset[, cn, drop = FALSE], function(x) mean(x, na.rm = TRUE)) + # 计算标准差(忽略NA,样本标准差ddof=1,避免除以零) + sds <- sapply(dataset[, cn, drop = FALSE], function(x) { + sd_val <- sd(x, na.rm = TRUE) + ifelse(sd_val == 0, 1, sd_val) + }) + attr(dataset, "radiant_ms") <- ms + attr(dataset, "radiant_sds") <- sds + attr(dataset, "radiant_sf") <- sf + } else { + ms <- attr(dataset, "radiant_ms") + sds <- attr(dataset, "radiant_sds") + if (is.null(ms) || is.null(sds)) { + warning("Training data mean/std not found; skipping standardization.") + return(dataset) + } + } + + dataset[, cn] <- lapply(seq_along(cn), function(i) { + (dataset[[cn[i]]] - ms[i]) / sds[i] + }) + + attr(dataset, "description") <- descr + return(dataset) +} + +#' Summary method for the svm function +#' @export +summary.svm <- function(object, prn = TRUE, ...) { if (is.character(object)) return(object) + + svm_model <- object$model + n_obs <- nrow(object$dataset) + wtsname <- object$wtsname # 可能是 NULL 或长度 0 字符 + cat("Support Vector Machine\n") - cat("Data :", object$df_name, "\n") - if (!is.empty(object$data_filter)) cat("Filter :", object$data_filter, "\n") - cat("Response :", object$rvar, "\n") - if (object$type == "classification") cat("Level :", object$lev, "\n") - cat("Variables :", paste(object$evar, collapse = ", "), "\n") - cat("Kernel :", object$model$kernel, "\n") - cat("Cost (C) :", object$model$cost, "\n") - if (object$model$kernel != "linear") cat("Gamma :", object$model$gamma, "\n") - cat("Support vectors :", length(object$model$SV), "\n") - invisible(object) + cat(sprintf("Kernel type : %s (%s)\n", object$kernel, object$type)) + cat(sprintf("Data : %s\n", object$df_name)) + cat(sprintf("Response variable : %s\n", object$rvar)) + if (object$type == "classification") { + cat(sprintf("Level : %s in %s\n", object$lev, object$rvar)) + } + cat(sprintf("Explanatory variables: %s\n", paste(object$evar, collapse = ", "))) + + if (!is.null(wtsname) && length(wtsname) && wtsname != "") { + cat(sprintf("Weights used : %s\n", wtsname)) + } + + cat(sprintf("Cost (C) : %.2f\n", object$cost)) + if (object$kernel %in% c("radial", "poly", "sigmoid")) { + cat(sprintf("Gamma : %.2f\n", object$gamma)) + } + if (!is.na(object$seed)) cat(sprintf("Seed : %s\n", object$seed)) + + if (object$type == "classification") { + n_sv_per_class <- svm_model$nSV + total_sv <- sum(n_sv_per_class) + sv_info <- paste(sprintf("class %s: %d", seq_along(n_sv_per_class), n_sv_per_class), collapse = ", ") + cat(sprintf("Support vectors : %d (%s)\n", total_sv, sv_info)) + } else { + total_sv <- sum(svm_model$nSV) + cat(sprintf("Support vectors : %d\n", total_sv)) + } + + ## ---- 权重样本数计算同样保护 ---- + if (!is.null(wtsname) && length(wtsname) && wtsname != "") { + weights_values <- as.numeric(object$dataset[[wtsname]]) + nr_obs <- if (all(!is.na(weights_values))) sum(weights_values, na.rm = TRUE) else n_obs + } else { + nr_obs <- n_obs + } + cat(sprintf("Nr_obs : %s\n", format_nr(nr_obs, dec = 0))) + + ## ---- 系数输出(仅线性核) ---- + if (prn) { + cat("Coefficients/Support Vectors:\n") + if (object$kernel == "linear") { + if (is.null(svm_model$w) || length(svm_model$w) == 0) { + cat(" Linear kernel coefficients not available (possible reasons:\n") + cat(" - Insufficient support vectors (data may be linearly inseparable)\n") + cat(" - Model training did not converge)\n") + if (object$type == "classification") { + cat(sprintf(" Support vectors count: %d\n", sum(svm_model$nSV))) + } + } else { + feat_coefs_raw <- as.numeric(svm_model$w) + bias <- as.numeric(-svm_model$rho) + n_evar <- length(object$evar) + feat_coefs <- matrix(data = feat_coefs_raw, nrow = 1, ncol = n_evar, byrow = TRUE, + dimnames = list(NULL, object$evar)) + coef_data <- data.frame( + Variable = c(object$evar, "bias"), + Value = as.numeric(c(as.vector(feat_coefs), bias)), + stringsAsFactors = FALSE, + check.names = FALSE + ) + for (i in seq(1, nrow(coef_data), 2)) { + if (i + 1 > nrow(coef_data)) { + cat(sprintf(" %-12s: %.2f\n", coef_data$Variable[i], coef_data$Value[i])) + } else { + cat(sprintf(" %-12s: %.2f %-12s: %.2f\n", + coef_data$Variable[i], coef_data$Value[i], + coef_data$Variable[i+1], coef_data$Value[i+1])) + } + } + } + } else { + cat(" Non-linear kernel: Coefficients not available\n") + } + } +} + +#' Plot method for the svm function +#' @export +plot.svm <- function(x, + plots = "none", + size = 12, + shiny = FALSE, + custom = FALSE, + ...) { + if (is.character(x) || !inherits(x, "svm")) return(x) + + plot_list <- list() + + if ("decision_boundary" %in% plots) { + if (length(x$evar) != 2) { + warning("Decision boundary plot requires exactly 2 explanatory variables") + } else if (x$type != "classification") { + warning("Decision boundary plot only available for classification") + } else if (nlevels(x$dataset[[x$rvar]]) != 2) { + warning("Decision boundary plot only available for binary classification") + } else { + plot_list[["decision_boundary"]] <- + svm_boundary_plot(x, size = size, custom = custom) + } + } + + if ("margin" %in% plots) { + plot_list[["margin"]] <- + svm_margin_plot(x, size = size, custom = custom) + } + if ("vip" %in% plots) { + if (length(x$evar) < 2) { + warning("Variable importance needs at least 2 explanatory variables") + } else { + plot_list[["vip"]] <- + svm_vip_plot(x, size = size, custom = custom) + } + } + + if (length(plot_list) == 0) { + return("No valid plots selected for SVM") + } + + ## 返回 patchwork 对象(Shiny 自动打印) + patchwork::wrap_plots(plot_list, ncol = min(2, length(plot_list))) %>% + { if (isTRUE(shiny)) . else print(.) } } -#' Predict method +#' Predict method for the svm function #' @export predict.svm <- function(object, pred_data = NULL, pred_cmd = "", dec = 3, envir = parent.frame(), ...) { + ## 1. 基础校验 if (is.character(object)) return(object) + if (!inherits(object, "svm")) stop("Object must be of class 'svm'") + + ## 2.1 确定预测数据源 + if (is.null(pred_data) || is.character(pred_data)) { + # 当pred_data为NULL或字符(数据集名)时,使用训练数据 + pred_data_raw <- object$dataset[, object$evar, drop = FALSE] + } else { + # 当pred_data是数据框时,直接使用 + pred_data_raw <- as.data.frame(pred_data) + } + + pred_names <- colnames(pred_data_raw) + missing_vars <- setdiff(object$evar, pred_names) + + if (length(missing_vars) > 0) { + msg <- paste0( + "NA\n" + ) + return(msg %>% add_class("svm.predict")) + } + + pred_data <- pred_data_raw[, object$evar, drop = FALSE] + + if (!is.empty(pred_cmd)) { + pred_cmd <- gsub("\\s{2,}", " ", pred_cmd) %>% + gsub(";\\s+", ";", .) %>% + strsplit(";")[[1]] + for (cmd in pred_cmd) { + if (grepl("=", cmd)) { + var_val <- strsplit(trimws(cmd), "=")[[1]] + var <- trimws(var_val[1]) + val <- try(eval(parse(text = trimws(var_val[2])), envir = envir), silent = TRUE) + if (!inherits(val, "try-error")) pred_data[[var]] <- val + else warning(sprintf("Invalid command '%s': using original values", cmd)) + } + } + pred_data <- unique(pred_data) + } + + ## 3. 变量类型与因子水平校验 + train_types <- sapply(object$dataset[, object$evar], class) + pred_types <- sapply(pred_data, class) + type_mismatch <- names(which(train_types != pred_types)) + if (length(type_mismatch) > 0) { + return(paste0("Variable type mismatch (train vs pred):\n", + paste(sprintf(" %s: %s vs %s", type_mismatch, + train_types[type_mismatch], pred_types[type_mismatch]), + collapse = "\n")) %>% add_class("svm.predict")) + } + + for (var in object$evar) { + if (is.factor(object$dataset[[var]])) { + train_levs <- levels(object$dataset[[var]]) + pred_levs <- levels(pred_data[[var]]) + if (!identical(train_levs, pred_levs)) { + pred_data[[var]] <- factor(pred_data[[var]], levels = train_levs) + warning(sprintf("Aligned factor levels for '%s' to match training data", var)) + } + } + } + + ## 4. 标准化对齐 + train_ms <- attr(object$dataset, "radiant_ms") + train_sds <- attr(object$dataset, "radiant_sds") + train_sf <- attr(object$dataset, "radiant_sf") %||% 2 + if (!is.null(train_ms) && !is.null(train_sds)) { + pred_data <- scale_df( + dataset = pred_data, + center = TRUE, scale = TRUE, + sf = train_sf, wts = NULL, + calc = FALSE + ) + attr(pred_data, "radiant_ms") <- train_ms + attr(pred_data, "radiant_sds") <- train_sds + } + + ## 5. 生成预测值 + predict_args <- list( + object = object$model, + newdata = pred_data, + na.action = na.omit + ) - pfun <- function(model, newdata, ...) { - predict(model, newdata, probability = object$model$probability)[, 1] + pred_result <- if (object$type == "classification") { + predict_args$type <- "class" + pred_class <- do.call(predict, predict_args) + if (isTRUE(object$model$param$probability)) { + predict_args$type <- "probabilities" + pred_prob <- do.call(predict, predict_args) %>% + as.data.frame() %>% + set_colnames(paste0("Prob_", colnames(.))) + data.frame( + Predicted_Class = as.character(pred_class), + pred_prob, + stringsAsFactors = FALSE + ) + } else { + data.frame(Predicted_Class = as.character(pred_class), stringsAsFactors = FALSE) + } + } else { + predict_args$type <- "response" + pred_val <- do.call(predict, predict_args) + pred_val <- as.numeric(pred_val) + data.frame(Predicted_Value = round(pred_val, dec), stringsAsFactors = FALSE) } - predict_model(object, pfun, "svm.predict", - pred_data, pred_cmd, - dec = dec, envir = envir) + pred_result <- cbind(pred_data, pred_result) + attr(pred_result, "svm_meta") <- list( + kernel = object$kernel, + cost = object$cost, + gamma = if (object$kernel != "linear") object$gamma else NA, + seed = object$seed, + train_data = object$df_name, + model_type = object$type + ) + attr(pred_result, "class") <- c("svm.predict", "data.frame") + return(pred_result) } -#' Print predictions +#' Print method for predict.svm #' @export print.svm.predict <- function(x, ..., n = 10) { - print_predict_model(x, ..., n = n, header = "SVM") + if (is.character(x)) { + cat(x, "\n") + return(invisible(x)) + } + if (!inherits(x, "svm.predict")) stop("Object must be of class 'svm.predict'") + + meta <- attr(x, "svm_meta") + n_pred <- nrow(x) + show_n <- if (n < 0 || n >= n_pred) n_pred else n + + cat("SVM Predictions\n") + cat(sprintf("Model Type : %s\n", tools::toTitleCase(meta$model_type))) + cat(sprintf("Kernel : %s\n", meta$kernel)) + cat(sprintf("Cost (C) : %.2f\n", meta$cost)) + if (!is.na(meta$gamma)) cat(sprintf("Gamma : %.2f\n", meta$gamma)) + if (!is.na(meta$seed)) cat(sprintf("Seed : %s\n", meta$seed)) + cat(sprintf("Training Dataset : %s\n", meta$train_data)) + cat(sprintf("Total Predictions : %d\n", n_pred)) + + if (n_pred == 0) { + cat("No predictions generated.\n") + return(invisible(x)) + } + + x_show <- x[1:show_n, , drop = FALSE] # 确保保持数据框结构 + + col_widths <- sapply(colnames(x_show), function(cn) { + max(nchar(cn), max(nchar(as.character(x_show[[cn]])), na.rm = TRUE)) + }) + + fmt_parts <- paste0("%-", col_widths, "s") + fmt <- paste(fmt_parts, collapse = " ") + + header_vals <- as.character(colnames(x_show)) + cat(do.call(sprintf, c(list(fmt), header_vals)), "\n") + + divider <- paste0(rep("-", sum(col_widths) + 2*(length(col_widths)-1)), collapse = "") + cat(divider, "\n") + + for (i in 1:show_n) { + row_vals <- as.character(x_show[i, ]) + row_vals[is.na(row_vals)] <- "NA" + cat(do.call(sprintf, c(list(fmt), row_vals)), "\n") + } + + if (show_n < n_pred) { + cat(sprintf("\n... (showing first %d of %d; use 'n=-1' to view all)\n", + show_n, n_pred)) + } + return(invisible(x)) +} + + +#' Cross-validation for SVM +#' @export +cv.svm <- function(object, K = 5, repeats = 1, + kernel = c("linear", "radial"), + cost = 2^(-2:2), + gamma = 2^(-2:2), + seed = 1234, trace = TRUE, fun, ...) { + if (!inherits(object, "svm")) stop("Object must be of class 'svm'") + + tune_grid <- expand.grid( + kernel = kernel, + cost = cost, + gamma = if (any(kernel %in% c("radial", "poly", "sigmoid"))) gamma else NA + ) + + cv_results <- data.frame( + mean_perf = rep(NA, nrow(tune_grid)), + std_perf = rep(NA, nrow(tune_grid)), + kernel = tune_grid$kernel, + cost = tune_grid$cost, + gamma = tune_grid$gamma + ) + cv_results +} + +# ---- 决策边界 ---- +#' @export +svm_boundary_plot <- function(object, size, custom) { + df <- object$dataset + rvar <- object$rvar + f1 <- object$evar[1] + f2 <- object$evar[2] + + ## 1. 造网格(因子用水平,数值用序列) + grid <- expand.grid( + f1 = if (is.factor(df[[f1]])) levels(df[[f1]]) else + seq(min(df[[f1]], na.rm = TRUE), max(df[[f1]], na.rm = TRUE), length.out = 200), + f2 = if (is.factor(df[[f2]])) levels(df[[f2]]) else + seq(min(df[[f2]], na.rm = TRUE), max(df[[f2]], na.rm = TRUE), length.out = 200) + ) + names(grid) <- c(f1, f2) + + ## 2. 预测:分类用决策函数值,回归用响应值 + pred <- predict(object$model, newdata = grid, + type = ifelse(object$type == "classification", "decision", "response"), + na.action = na.pass) # 保留 NA + grid$pred <- as.numeric(pred) # 强制数值 + + ## 3. 绘图 + p <- ggplot(df, aes_string(f1, f2)) + + geom_tile(data = grid, aes_string(fill = "pred"), alpha = 0.65) + + geom_point(aes(color = .data[[rvar]]), size = 2) + + scale_fill_gradient(low = "#A4C4FF", high = "#FF9A9A", na.value = "grey90") + + labs(title = "SVM Decision Boundary", + x = f1, y = f2, fill = "Score", color = rvar) + + theme_gray(base_size = size) + + theme(legend.position = "bottom") + + if (custom) p else print(p) +} + +# ---- 支持向量 / 间隔 ---- +#' @export +svm_margin_plot <- function(object, size, custom) { + mod <- object$model + df <- object$dataset + # 把支持向量原始行号转成逻辑标记 + sv_idx <- seq_len(nrow(df)) %in% mod$index + df$sv <- sv_idx # 长度 = nrow(df) + + p <- ggplot(df, aes_string(object$evar[1], object$evar[2])) + + geom_point(aes(color = sv, shape = sv), size = 2, alpha = 0.8) + + scale_color_manual(values = c("FALSE" = "grey60", "TRUE" = "red"), + labels = c("Ordinary", "Support Vector")) + + labs(title = "Support Vectors & Margin", + color = NULL, shape = NULL) + + theme_gray(base_size = size) + + theme(legend.position = "bottom") + + if (custom) p else print(p) +} + +#' Variable importance for SVM using permutation importance +#' @export +varimp <- function(object, rvar = NULL, lev = NULL, data = NULL, seed = 1234, nperm = 10) { + if (!inherits(object, "svm")) { + stop("Object must be of class 'svm'") + } + + # 使用训练数据作为默认 + if (is.null(data)) { + data <- object$dataset + } + + # 确定响应变量 + if (is.null(rvar)) { + rvar <- object$rvar + } + + # 确定分类水平 + if (is.null(lev) && object$type == "classification") { + lev <- object$lev + } + + # 创建仅包含解释变量的数据集 + X <- data[, object$evar, drop = FALSE] + y <- data[[rvar]] + + # 设置随机种子 + if (!is.na(seed)) { + set.seed(seed) + } + + # 基准预测 + base_pred <- predict(object, pred_data = data, envir = environment()) + + # 根据任务类型选择性能指标 + if (object$type == "classification") { + # 处理二分类或多分类 + base_metric <- if (nlevels(as.factor(y)) == 2) { + # 二分类:计算AUC + pred_prob_col <- if (length(grep("Prob_", colnames(base_pred))) > 0) { + grep(paste0("Prob_", lev), colnames(base_pred), value = TRUE) + } else { + NULL + } + + if (!is.null(pred_prob_col)) { + pROC::roc(response = y, predictor = base_pred[[pred_prob_col]])$auc[[1]] + } else { + # 无概率输出,使用准确率 + mean(base_pred$Predicted_Class == y, na.rm = TRUE) + } + } else { + # 多分类:使用准确率 + mean(base_pred$Predicted_Class == y, na.rm = TRUE) + } + } else { + # 回归:计算R² + base_metric <- 1 - sum((base_pred$Predicted_Value - y)^2, na.rm = TRUE) / + sum((y - mean(y, na.rm = TRUE))^2, na.rm = TRUE) + } + + # 为每个变量计算排列重要性 + importance_scores <- sapply(object$evar, function(var) { + metric_diffs <- numeric(nperm) + + for (i in 1:nperm) { + # 创建数据副本 + perm_data <- data + # 随机打乱当前变量 + perm_data[[var]] <- sample(perm_data[[var]], replace = FALSE) + + # 预测 + perm_pred <- predict(object, pred_data = perm_data, envir = environment()) + + # 计算性能变化 + if (object$type == "classification") { + if (nlevels(as.factor(y)) == 2 && length(grep("Prob_", colnames(perm_pred))) > 0) { + pred_prob_col <- grep(paste0("Prob_", lev), colnames(perm_pred), value = TRUE) + if (length(pred_prob_col) > 0) { + perm_metric <- pROC::roc(response = y, predictor = perm_pred[[pred_prob_col]])$auc[[1]] + } else { + perm_metric <- mean(perm_pred$Predicted_Class == y, na.rm = TRUE) + } + } else { + perm_metric <- mean(perm_pred$Predicted_Class == y, na.rm = TRUE) + } + metric_diffs[i] <- base_metric - perm_metric + } else { + perm_metric <- 1 - sum((perm_pred$Predicted_Value - y)^2, na.rm = TRUE) / + sum((y - mean(y, na.rm = TRUE))^2, na.rm = TRUE) + metric_diffs[i] <- base_metric - perm_metric + } + } + + mean(metric_diffs, na.rm = TRUE) + }) + + # 创建结果数据框 + result <- data.frame( + Variable = names(importance_scores), + Importance = as.numeric(importance_scores), + stringsAsFactors = FALSE + ) + + # 按重要性排序 + result <- result[order(-result$Importance), ] + rownames(result) <- NULL + return(result) +} + + +#' @export +svm_vip_plot <- function(object, size, custom) { + tryCatch({ + vi_scores <- varimp( + object, + rvar = object$rvar, + lev = if (object$type == "classification") object$lev else NULL, + data = object$dataset, + seed = 1234 + ) + + # 确保重要性值是数值类型 + vi_scores$Importance <- as.numeric(pmax(vi_scores$Importance, 0)) + + # 检查数据有效性 + if (nrow(vi_scores) == 0 || all(is.na(vi_scores$Importance))) { + p <- ggplot() + + annotate("text", x = 0.5, y = 0.5, + label = "Could not compute variable importance\n(check model/data)", + size = 5, color = "red") + + theme_void() + } else { + # 创建条形图 + p <- ggplot(vi_scores, aes(x = reorder(Variable, Importance), y = Importance)) + + geom_col(fill = "#377eb8") + + coord_flip() + + labs( + title = "SVM Variable Importance (Permutation)", + x = NULL, + y = ifelse(object$type == "regression", + "Importance (R² decrease)", + "Importance (Performance decrease)") + ) + + theme_gray(base_size = size) + + theme( + axis.text.y = element_text(hjust = 0), + panel.grid.major.y = element_line(color = "grey90"), + panel.grid.minor = element_blank() + ) + } + }, error = function(e) { + p <- ggplot() + + annotate("text", x = 0.5, y = 0.5, + label = paste("Error calculating importance:\n", e$message), + size = 4, color = "red") + + theme_void() + }) + + if (custom) { + return(p) + } else { + print(p) + invisible(p) + } } \ No newline at end of file diff --git a/radiant.model/inst/app/tools/analysis/svm_ui.R b/radiant.model/inst/app/tools/analysis/svm_ui.R index 8bb64e7..565b11f 100644 --- a/radiant.model/inst/app/tools/analysis/svm_ui.R +++ b/radiant.model/inst/app/tools/analysis/svm_ui.R @@ -1,50 +1,42 @@ -## ========== svm_ui.R ========== - -## 1. plot 列表 ---------------------------------------------------------- svm_plots <- c( - "none", "dist", "correlations", "scatter", "vip", "pred_plot", "pdp", "dashboard", "residuals", "coef", "influence" + "none", "decision_boundary", "margin", "vip" ) names(svm_plots) <- c( i18n$t("None"), - i18n$t("Distribution"), - i18n$t("Correlations"), - i18n$t("Scatter"), - i18n$t("Permutation Importance"), - i18n$t("Prediction plots"), - i18n$t("Partial Dependence"), - i18n$t("Dashboard"), - i18n$t("Residuals vs fitted"), - i18n$t("Coefficient plot"), - i18n$t("Influential observations") + i18n$t("Decision Boundary (2 vars)"), + i18n$t("Support Vectors & Margin(2 vars)"), + i18n$t("Variable importance") ) -## 2. 函数缺省参数 ------------------------------------------------------- +## SVM函数参数列表 svm_args <- as.list(formals(svm)) -## 3. 用户输入收集 ------------------------------------------------------- + +## 用户选择的输入参数 svm_inputs <- reactive({ svm_args$data_filter <- if (input$show_filter) input$data_filter else "" - svm_args$arr <- if (input$show_filter) input$data_arrange else "" - svm_args$rows <- if (input$show_filter) input$data_rows else "" - svm_args$dataset <- input$dataset + svm_args$arr <- if (input$show_filter) input$data_arrange else "" + svm_args$rows <- if (input$show_filter) input$data_rows else "" + svm_args$dataset <- input$dataset for (i in r_drop(names(svm_args))) { svm_args[[i]] <- input[[paste0("svm_", i)]] } svm_args }) -## 4. predict 参数 ------------------------------------------------------- +## 预测参数(保留命令模式,未改动) svm_pred_args <- as.list(if (exists("predict.svm")) { formals(predict.svm) } else { - formals(e1071:::predict.svm) + formals(radiant.model:::predict.svm) }) svm_pred_inputs <- reactive({ for (i in names(svm_pred_args)) { svm_pred_args[[i]] <- input[[paste0("svm_", i)]] } + svm_pred_args$dec <- input$svm_dec %||% 3 - svm_pred_args$pred_cmd <- svm_pred_args$pred_data <- "" + svm_pred_args$pred_cmd <- svm_pred_args$pred_data <- "" if (input$svm_predict == "cmd") { svm_pred_args$pred_cmd <- gsub("\\s{2,}", " ", input$svm_pred_cmd) %>% gsub(";\\s+", ";", .) %>% @@ -57,14 +49,14 @@ svm_pred_inputs <- reactive({ gsub("\"", "\'", .) svm_pred_args$pred_data <- input$svm_pred_data } - svm_pred_args + return(svm_pred_args) }) -## 5. plot 参数 --------------------------------------------------------- +## 绘图参数(砍掉vip、pdp、svm_margin) svm_plot_args <- as.list(if (exists("plot.svm")) { formals(plot.svm) } else { - formals(e1071:::plot.svm) + formals(radiant.model:::plot.svm) }) svm_plot_inputs <- reactive({ @@ -74,52 +66,36 @@ svm_plot_inputs <- reactive({ svm_plot_args }) -## 6. pred-plot 参数 ---------------------------------------------------- -svm_pred_plot_args <- as.list(if (exists("plot.model.predict")) { - formals(plot.model.predict) -} else { - formals(radiant.model:::plot.model.predict) -}) - -svm_pred_plot_inputs <- reactive({ - for (i in names(svm_pred_plot_args)) { - svm_pred_plot_args[[i]] <- input[[paste0("svm_", i)]] - } - svm_pred_plot_args -}) - -## 7. 响应变量 ---------------------------------------------------------- +## 响应变量UI output$ui_svm_rvar <- renderUI({ + req(input$svm_type) withProgress(message = i18n$t("Acquiring variable information"), value = 1, { if (input$svm_type == "classification") { - vars <- two_level_vars() + vars <- two_level_vars() # 仅二分类 } else { isNum <- .get_class() %in% c("integer", "numeric", "ts") vars <- varnames()[isNum] } }) - init <- if (input$svm_type == "classification") { if (is.empty(input$logit_rvar)) isolate(input$svm_rvar) else input$logit_rvar } else { if (is.empty(input$reg_rvar)) isolate(input$svm_rvar) else input$reg_rvar } - selectInput( inputId = "svm_rvar", - label = i18n$t("Response variable:"), + label = i18n$t("Response variable:"), choices = vars, selected = state_single("svm_rvar", vars, init), multiple = FALSE ) }) -## 8. 分类时选正类 ------------------------------------------------------ +## 分类水平UI output$ui_svm_lev <- renderUI({ req(input$svm_type == "classification") req(available(input$svm_rvar)) levs <- .get_data()[[input$svm_rvar]] %>% as_factor() %>% levels() - init <- if (is.empty(input$logit_lev)) isolate(input$svm_lev) else input$logit_lev selectInput( inputId = "svm_lev", label = i18n$t("Choose level:"), @@ -128,21 +104,19 @@ output$ui_svm_lev <- renderUI({ ) }) -## 9. 解释变量 ---------------------------------------------------------- +## 解释变量UI output$ui_svm_evar <- renderUI({ if (not_available(input$svm_rvar)) return() vars <- varnames() if (length(vars) > 0) vars <- vars[-which(vars == input$svm_rvar)] - init <- if (input$svm_type == "classification") { if (is.empty(input$logit_evar)) isolate(input$svm_evar) else input$logit_evar } else { if (is.empty(input$reg_evar)) isolate(input$svm_evar) else input$reg_evar } - selectInput( inputId = "svm_evar", - label = i18n$t("Explanatory variables:"), + label = i18n$t("Explanatory variables:"), choices = vars, selected = state_multiple("svm_evar", vars, init), multiple = TRUE, @@ -151,16 +125,15 @@ output$ui_svm_evar <- renderUI({ ) }) -## 10. 权重变量 --------------------------------------------------------- +## 权重变量UI output$ui_svm_wts <- renderUI({ isNum <- .get_class() %in% c("integer", "numeric", "ts") - vars <- varnames()[isNum] + vars <- varnames()[isNum] if (length(vars) > 0 && any(vars %in% input$svm_evar)) { vars <- base::setdiff(vars, input$svm_evar) - names(vars) <- varnames() %>% { .[match(vars, .)] } %>% names() + names(vars) <- varnames() %>% {.[match(vars, .)]} %>% names() } vars <- c("None", vars) - selectInput( inputId = "svm_wts", label = i18n$t("Weights:"), choices = vars, selected = state_single("svm_wts", vars), @@ -168,11 +141,11 @@ output$ui_svm_wts <- renderUI({ ) }) -## 11. 存储预测/残差名 -------------------------------------------------- +## 存储预测值UI(残差存储已删除) output$ui_svm_store_pred_name <- renderUI({ init <- state_init("svm_store_pred_name", "pred_svm") %>% sub("\\d{1,}$", "", .) %>% - paste0(., ifelse(is.empty(input$svm_cost), "", input$svm_cost)) + paste0(., ifelse(is.empty(input$svm_kernel), "", input$svm_kernel)) textInput( "svm_store_pred_name", i18n$t("Store predictions:"), @@ -180,43 +153,36 @@ output$ui_svm_store_pred_name <- renderUI({ ) }) -output$ui_svm_store_res_name <- renderUI({ - req(input$dataset) - textInput("svm_store_res_name", i18n$t("Store residuals:"), "", placeholder = i18n$t("Provide variable name")) -}) - -## 12. 预测与绘图重置 --------------------------------------------------- +## 数据集/模型类型切换时重置预测与绘图 observeEvent(input$dataset, { - updateSelectInput(session, "svm_predict", selected = "none") - updateSelectInput(session, "svm_plots", selected = "none") -}) -observeEvent(input$svm_type, { - updateSelectInput(session, "svm_predict", selected = "none") - updateSelectInput(session, "svm_plots", selected = "none") + updateSelectInput(session = session, inputId = "svm_predict", selected = "none") + updateSelectInput(session = session, inputId = "svm_plots", selected = "none") }) -## 13. 预测控制 ---------------------------------------------------------- -output$ui_svm_predict_plot <- renderUI({ - predict_plot_controls("svm") +observeEvent(input$svm_type, { + updateSelectInput(session = session, inputId = "svm_predict", selected = "none") + updateSelectInput(session = session, inputId = "svm_plots", selected = "none") }) -## 14. 绘图数量 ---------------------------------------------------------- +## 绘图选项UI(已删vip、pdp、svm_margin) output$ui_svm_plots <- renderUI({ req(input$svm_type) - if (input$svm_type != "regression") { - svm_plots <- head(svm_plots, -1) # 去掉 regression 专用图 + avail_plots <- svm_plots + if (input$svm_type != "classification") { + avail_plots <- avail_plots[!names(avail_plots) %in% i18n$t("Decision Boundary (2 vars)")] } selectInput( "svm_plots", i18n$t("Plots:"), - choices = svm_plots, - selected = state_single("svm_plots", svm_plots) + choices = avail_plots, + selected = state_single("svm_plots", avail_plots) ) }) -## 15. 绘图点数 ---------------------------------------------------------- +## 数据点数量UI(仅dashboard用,保留) output$ui_svm_nrobs <- renderUI({ nrobs <- nrow(.get_data()) - choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>% .[. < nrobs] + choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>% + .[. < nrobs] selectInput( "svm_nrobs", i18n$t("Number of data points plotted:"), choices = choices, @@ -224,20 +190,14 @@ output$ui_svm_nrobs <- renderUI({ ) }) -## 16. 刷新按钮 ---------------------------------------------------------- -run_refresh(svm_args, "svm", tabs = "tabs_svm", - label = i18n$t("Estimate model"), - relabel = i18n$t("Re-estimate model")) - -## 17. 主 UI 组装 -------------------------------------------------------- +## 主UI面板(已删残差存储入口) output$ui_svm <- renderUI({ req(input$dataset) tagList( conditionalPanel( condition = "input.tabs_svm == 'Summary'", wellPanel( - actionButton("svm_run", i18n$t("Estimate model"), width = "100%", - icon = icon("play", verify_fa = FALSE), class = "btn-success") + actionButton("svm_run", i18n$t("Estimate model"), width = "100%", icon = icon("play", verify_fa = FALSE), class = "btn-success") ) ), wellPanel( @@ -246,88 +206,59 @@ output$ui_svm <- renderUI({ radioButtons( "svm_type", label = NULL, - choices = c("classification", "regression") %>% { - names(.) <- c(i18n$t("Classification"), i18n$t("Regression")); . - }, + choices = c("classification", "regression") %>% + { names(.) <- c(i18n$t("Classification"), i18n$t("Regression")); . }, inline = TRUE ), uiOutput("ui_svm_rvar"), uiOutput("ui_svm_lev"), uiOutput("ui_svm_evar"), uiOutput("ui_svm_wts"), - selectInput( - "svm_kernel", - label = i18n$t("Kernel:"), - choices = c("linear", "polynomial", "radial", "sigmoid") %>% { - names(.) <- c(i18n$t("Linear"), i18n$t("Polynomial"), - i18n$t("Radial"), i18n$t("Sigmoid")); . - }, - selected = state_init("svm_kernel", "radial") - ), + # SVM特有参数 fluidRow( - column(6, + column(width = 6, + selectInput( + "svm_kernel", + label = i18n$t("Kernel:"), + choices = c("linear", "radial", "poly", "sigmoid"), + selected = state_init("svm_kernel", "radial"), + width = "100%" + ) + ), + column(width = 6, numericInput( "svm_cost", label = i18n$t("Cost (C):"), - min = 0.01, max = 100, - value = state_init("svm_cost", 1), - step = 0.01, width = "100%" - ) - ), - column(6, - conditionalPanel( - "input.svm_kernel != 'linear'", - numericInput( - "svm_gamma", - label = i18n$t("Gamma:"), - min = 0.001, max = 10, - value = state_init("svm_gamma", "auto"), - step = 0.001, width = "100%" - ) + min = 0.1, max = 100, + step = 0.1, value = state_init("svm_cost", 1), + width = "100%" ) ) ), fluidRow( - column(6, + column(width = 6, conditionalPanel( - "input.svm_kernel %in% c('polynomial', 'sigmoid')", + condition = "input.svm_kernel != 'linear'", numericInput( - "svm_coef0", - label = i18n$t("Coef0:"), - min = 0, max = 100, - value = state_init("svm_coef0", 0), + "svm_gamma", + label = i18n$t("Gamma:"), + min = 0.1, max = 20, + step = 0.1, value = state_init("svm_gamma", 1), width = "100%" ) ) ), - column(6, - conditionalPanel( - "input.svm_type == 'regression'", - numericInput( - "svm_epsilon", - label = i18n$t("Epsilon (tube):"), - min = 0.001, max = 1, - value = state_init("svm_epsilon", 0.1), - step = 0.001, width = "100%" - ) + column(width = 6, + numericInput( + "svm_seed", + label = i18n$t("Seed:"), + value = state_init("svm_seed", 1234), + width = "100%" ) ) - ), - numericInput( - "svm_seed", - label = i18n$t("Seed:"), - value = state_init("svm_seed", 12345), - width = "90px" - ), - conditionalPanel( - "input.svm_type == 'classification'", - checkboxInput( - "svm_probability", - label = i18n$t("Estimate class probabilities"), - value = state_init("svm_probability", FALSE) - ) - ), + ) ), + # 预测面板(残差存储已删除) conditionalPanel( condition = "input.tabs_svm == 'Predict'", selectInput( @@ -336,6 +267,16 @@ output$ui_svm <- renderUI({ choices = reg_predict, selected = state_single("svm_predict", reg_predict, "none") ), + conditionalPanel( + "input.svm_predict != 'none'", + numericInput( + "svm_dec", + label = i18n$t("Decimal places:"), + min = 1, max = 10, + value = state_init("svm_dec", 3), + width = "200px" + ) + ), conditionalPanel( "input.svm_predict == 'data' | input.svm_predict == 'datacmd'", selectizeInput( @@ -354,14 +295,6 @@ output$ui_svm <- renderUI({ placeholder = i18n$t("Type a formula to set values for model variables (e.g., carat = 1; cut = 'Ideal') and press return") ) ), - conditionalPanel( - condition = "input.svm_predict != 'none'", - checkboxInput("svm_pred_plot", i18n$t("Plot predictions"), state_init("svm_pred_plot", FALSE)), - conditionalPanel( - "input.svm_pred_plot == true", - uiOutput("ui_svm_predict_plot") - ) - ), conditionalPanel( "input.svm_predict == 'data' | input.svm_predict == 'datacmd'", tags$table( @@ -370,11 +303,12 @@ output$ui_svm <- renderUI({ ) ) ), + # 绘图面板(已删vip、pdp、svm_margin) conditionalPanel( condition = "input.tabs_svm == 'Plot'", uiOutput("ui_svm_plots"), conditionalPanel( - condition = "input.svm_plots == 'pdp' | input.svm_plots == 'pred_plot'", + condition = "input.svm_plots == 'pred_plot'", uiOutput("ui_svm_incl"), uiOutput("ui_svm_incl_int") ), @@ -382,15 +316,9 @@ output$ui_svm <- renderUI({ condition = "input.svm_plots == 'dashboard'", uiOutput("ui_svm_nrobs") ) - ), - conditionalPanel( - condition = "input.tabs_svm == 'Summary'", - tags$table( - tags$td(uiOutput("ui_svm_store_res_name")), - tags$td(actionButton("svm_store_res", i18n$t("Store"), icon = icon("plus", verify_fa = FALSE)), class = "top") - ) ) ), + # 帮助和报告面板 help_and_report( modal_title = i18n$t("Support Vector Machine (SVM)"), fun_name = "svm", @@ -399,56 +327,43 @@ output$ui_svm <- renderUI({ ) }) -## 18. 绘图尺寸动态计算 ------------------------------------------------- +## 绘图尺寸计算(已删vip、pdp、svm_margin) svm_plot <- reactive({ if (svm_available() != "available") return() if (is.empty(input$svm_plots, "none")) return() + res <- .svm() + if (is.character(res)) return() - plot_width <- 650 - if (input$svm_plots == "dashboard") { - plot_height <- 750 - } else if (input$svm_plots %in% c("pdp", "pred_plot")) { + plot_width <- 650 + if ("decision_boundary" %in% input$svm_plots) { + plot_height <- 500 + } else if (input$svm_plots == "pred_plot") { nr_vars <- length(input$svm_incl) + length(input$svm_incl_int) plot_height <- max(250, ceiling(nr_vars / 2) * 250) - if (length(input$svm_incl_int) > 0) { - plot_width <- plot_width + min(2, length(input$svm_incl_int)) * 90 - } } else { - plot_height <- 500 + plot_height <- max(500, length(res$evar) * 30) } list(plot_width = plot_width, plot_height = plot_height) }) -svm_plot_width <- function() svm_plot() %>% (function(x) if (is.list(x)) x$plot_width else 650) -svm_plot_height <- function() svm_plot() %>% (function(x) if (is.list(x)) x$plot_height else 500) -svm_pred_plot_height <- function() if (input$svm_pred_plot) 500 else 1 +svm_plot_width <- function() svm_plot()$plot_width %||% 650 +svm_plot_height <- function() svm_plot()$plot_height %||% 500 -## 19. 输出注册 ---------------------------------------------------------- +## 主输出面板(已删残差存储) output$svm <- renderUI({ register_print_output("summary_svm", ".summary_svm") register_print_output("predict_svm", ".predict_print_svm") - register_plot_output("predict_plot_svm", ".predict_plot_svm", - height_fun = "svm_pred_plot_height") - register_plot_output("plot_svm", ".plot_svm", - height_fun = "svm_plot_height", - width_fun = "svm_plot_width") + register_plot_output( + "plot_svm", ".plot_svm", + height_fun = "svm_plot_height", + width_fun = "svm_plot_width" + ) svm_output_panels <- tabsetPanel( id = "tabs_svm", - tabPanel(i18n$t("Summary"), value = "Summary", - download_link("dl_svm_coef"), br(), - verbatimTextOutput("summary_svm")), - tabPanel(i18n$t("Predict"), value = "Predict", - conditionalPanel( - "input.svm_pred_plot == true", - download_link("dlp_svm_pred"), - plotOutput("predict_plot_svm", width = "100%", height = "100%") - ), - download_link("dl_svm_pred"), br(), - verbatimTextOutput("predict_svm")), - tabPanel(i18n$t("Plot"), value = "Plot", - download_link("dlp_svm"), - plotOutput("plot_svm", width = "100%", height = "100%")) + tabPanel(i18n$t("Summary"), value = "Summary", verbatimTextOutput("summary_svm")), + tabPanel(i18n$t("Predict"), value = "Predict", download_link("dl_svm_pred"), br(), verbatimTextOutput("predict_svm")), + tabPanel(i18n$t("Plot"), value = "Plot", download_link("dlp_svm"), plotOutput("plot_svm", width = "100%", height = "100%")) ) stat_tab_panel( @@ -459,7 +374,7 @@ output$svm <- renderUI({ ) }) -## 20. 可用性检查 ------------------------------------------------------- +## 模型可用性检查 svm_available <- reactive({ req(input$svm_type) if (not_available(input$svm_rvar)) { @@ -471,46 +386,48 @@ svm_available <- reactive({ suggest_data("diamonds") } } else if (not_available(input$svm_evar)) { - if (input$svm_type == "classification") { - i18n$t("Please select one or more explanatory variables.") %>% suggest_data("titanic") - } else { - i18n$t("Please select one or more explanatory variables.") %>% suggest_data("diamonds") - } + i18n$t("Please select one or more explanatory variables.") %>% + suggest_data(ifelse(input$svm_type == "classification", "titanic", "diamonds")) } else { "available" } }) -## 21. 模型估计 ---------------------------------------------------------- +## 核心函数壳子 .svm <- eventReactive(input$svm_run, { - svmi <- svm_inputs() - svmi$envir <- r_data - withProgress(message = i18n$t("Estimating SVM"), value = 1, - do.call(svm, svmi)) + svi <- svm_inputs() + svi$envir <- r_data + withProgress(message = i18n$t("Estimating SVM model"), value = 1, do.call(svm, svi)) }) -## 22. summary ------------------------------------------------------------ +## 辅助输出函数壳子 .summary_svm <- reactive({ - if (not_pressed(input$svm_run)) return(i18n$t("** Press the Estimate button to estimate the model **")) + if (not_pressed(input$svm_run)) return(i18n$t("** Press the Estimate button to estimate the SVM model **")) if (svm_available() != "available") return(svm_available()) summary(.svm()) }) -## 23. predict ------------------------------------------------------------ .predict_svm <- reactive({ - if (not_pressed(input$svm_run)) return(i18n$t("** Press the Estimate button to estimate the model **")) + if (not_pressed(input$svm_run)) return(i18n$t("** Press 'Estimate model' first to train the SVM **")) if (svm_available() != "available") return(svm_available()) - if (is.empty(input$svm_predict, "none")) return(i18n$t("** Select prediction input **")) - if ((input$svm_predict == "data" || input$svm_predict == "datacmd") && is.empty(input$svm_pred_data)) - return(i18n$t("** Select data for prediction **")) - if (input$svm_predict == "cmd" && is.empty(input$svm_pred_cmd)) - return(i18n$t("** Enter prediction commands **")) + if (is.empty(input$svm_predict, "none")) return(i18n$t("** Select prediction type **")) + + if (input$svm_predict %in% c("data", "datacmd") &&(is.null(input$svm_pred_data) || is.empty(input$svm_pred_data))) { + return(i18n$t("** Select a dataset for prediction (under 'Prediction data') **")) + } + if (input$svm_predict %in% c("cmd", "datacmd") && is.empty(input$svm_pred_cmd)) + return(i18n$t("** Enter commands (e.g., 'carat = 1; cut = 'Ideal'') **")) - withProgress(message = i18n$t("Generating predictions"), value = 1, { - spi <- svm_pred_inputs() - spi$object <- .svm() - spi$envir <- r_data - do.call(predict, spi) + withProgress(message = i18n$t("Generating SVM predictions (scaling applied)"), value = 1, { + pred_args <- svm_pred_inputs() + pred_args$object <- .svm() + pred_args$envir <- r_data + if (input$svm_predict %in% c("data", "datacmd")) { + pred_args$pred_data <- r_data[[input$svm_pred_data]] + if (is.null(pred_args$pred_data)) + return(sprintf(i18n$t("** Dataset '%s' not found **"), input$svm_pred_data)) + } + do.call(predict, pred_args) }) }) @@ -518,125 +435,59 @@ svm_available <- reactive({ .predict_svm() %>% { if (is.character(.)) cat(., "\n") else print(.) } }) -## 24. pred-plot ---------------------------------------------------------- -.predict_plot_svm <- reactive({ - req(pressed(input$svm_run), input$svm_pred_plot, available(input$svm_xvar), - !is.empty(input$svm_predict, "none")) - withProgress(message = i18n$t("Generating prediction plot"), value = 1, - do.call(plot, c(list(x = .predict_svm()), svm_pred_plot_inputs()))) -}) - -## 25. plot -------------------------------------------------------------- .plot_svm <- reactive({ - if (not_pressed(input$svm_run)) return(i18n$t("** Press the Estimate button to estimate the model **")) + if (not_pressed(input$svm_run)) return(i18n$t("** Press the Estimate button to estimate the SVM model **")) if (svm_available() != "available") return(svm_available()) if (is.empty(input$svm_plots, "none")) return(i18n$t("Please select an SVM plot from the drop-down menu")) pinp <- svm_plot_inputs() pinp$shiny <- TRUE - if (input$svm_plots == "dashboard") req(input$svm_nrobs) - - withProgress(message = i18n$t("Generating plots"), value = 1, - do.call(plot, c(list(x = .svm()), pinp))) -}) - -## 26. 存储 -------------------------------------------------------------- -observeEvent(input$svm_store_res, { - req(pressed(input$svm_run)) - robj <- .svm() - if (!is.list(robj)) return() - fixed <- fix_names(input$svm_store_res_name) - updateTextInput(session, "svm_store_res_name", value = fixed) - withProgress(message = i18n$t("Storing residuals"), value = 1, - r_data[[input$dataset]] <- store(r_data[[input$dataset]], robj, name = fixed)) + withProgress(message = i18n$t("Generating SVM plots"), value = 1, do.call(plot, c(list(x = .svm()), pinp))) }) +## 存储预测值(残差存储已删除) observeEvent(input$svm_store_pred, { - req(!is.empty(input$svm_pred_data), pressed(input$svm_run)) - pred <- .predict_svm() - if (is.null(pred)) return() - fixed <- fix_names(input$svm_store_pred_name) - updateTextInput(session, "svm_store_pred_name", value = fixed) - withProgress(message = i18n$t("Storing predictions"), value = 1, - r_data[[input$svm_pred_data]] <- store(r_data[[input$svm_pred_data]], pred, name = fixed)) -}) - -## 27. report ------------------------------------------------------------ -svm_report <- function() { - if (is.empty(input$svm_evar)) return(invisible()) - - outputs <- c("summary") - inp_out <- list(list(prn = TRUE), "") - figs <- FALSE - - if (!is.empty(input$svm_plots, "none")) { - inp <- check_plot_inputs(svm_plot_inputs()) - inp_out[[2]] <- clean_args(inp, svm_plot_args[-1]) - inp_out[[2]]$custom <- FALSE - outputs <- c(outputs, "plot") - figs <- TRUE - } + req( + pressed(input$svm_run), + !is.empty(input$svm_pred_data), + !is.empty(input$svm_store_pred_name), + inherits(.predict_svm(), "svm.predict") + ) + pred_result <- .predict_svm() + target_data <- r_data[[input$svm_pred_data]] + base_col_name <- fix_names(input$svm_store_pred_name) + meta <- attr(pred_result, "svm_meta") - if (!is.empty(input$svm_store_res_name)) { - fixed <- fix_names(input$svm_store_res_name) - updateTextInput(session, "svm_store_res_name", value = fixed) - xcmd <- paste0(input$dataset, " <- store(", input$dataset, ", result, name = \"", fixed, "\")\n") + pred_cols <- if (meta$model_type == "classification") { + colnames(pred_result)[grepl("^Predicted_Class|^Prob_", colnames(pred_result))] } else { - xcmd <- "" + "Predicted_Value" } - - if (!is.empty(input$svm_predict, "none") && - (!is.empty(input$svm_pred_data) || !is.empty(input$svm_pred_cmd))) { - pred_args <- clean_args(svm_pred_inputs(), svm_pred_args[-1]) - - if (!is.empty(pred_args$pred_cmd)) - pred_args$pred_cmd <- strsplit(pred_args$pred_cmd, ";\\s*")[[1]] - else - pred_args$pred_cmd <- NULL - - if (!is.empty(pred_args$pred_data)) - pred_args$pred_data <- as.symbol(pred_args$pred_data) - else - pred_args$pred_data <- NULL - - inp_out[[2 + figs]] <- pred_args - outputs <- c(outputs, "pred <- predict") - xcmd <- paste0(xcmd, "print(pred, n = 10)") - if (input$svm_predict %in% c("data", "datacmd")) { - fixed <- fix_names(input$svm_store_pred_name) - updateTextInput(session, "svm_store_pred_name", value = fixed) - xcmd <- paste0(xcmd, "\n", input$svm_pred_data, " <- store(", - input$svm_pred_data, ", pred, name = \"", fixed, "\")") - } - - if (input$svm_pred_plot && !is.empty(input$svm_xvar)) { - inp_out[[3 + figs]] <- clean_args(svm_pred_plot_inputs(), svm_pred_plot_args[-1]) - inp_out[[3 + figs]]$result <- "pred" - outputs <- c(outputs, "plot") - figs <- TRUE - } + new_col_names <- if (length(pred_cols) == 1) base_col_name else { + suffix <- gsub("^Predicted_|^Prob_", "", pred_cols) + paste0(base_col_name, "_", suffix) } + colnames(pred_result)[match(pred_cols, colnames(pred_result))] <- new_col_names - svm_inp <- svm_inputs() - if (input$svm_type == "regression") svm_inp$lev <- NULL - - update_report( - inp_main = clean_args(svm_inp, svm_args), - fun_name = "svm", - inp_out = inp_out, - outputs = outputs, - figs = figs, - fig.width = svm_plot_width(), - fig.height= svm_plot_height(), - xcmd = xcmd + merged_data <- merge( + target_data, + pred_result[, c(meta$evar, new_col_names), drop = FALSE], + by = meta$evar, all.x = TRUE ) -} + r_data[[input$svm_pred_data]] <- merged_data + showNotification( + sprintf(i18n$t("SVM predictions stored as: %s (in '%s')"), + paste(new_col_names, collapse = ", "), input$svm_pred_data), + type = "message" + ) + updateTextInput(session, "svm_store_pred_name", value = base_col_name) +}) -## 28. 下载 -------------------------------------------------------------- +## 下载处理 dl_svm_pred <- function(path) { if (pressed(input$svm_run)) { write.csv(.predict_svm(), file = path, row.names = FALSE) } else { - cat(i18n$t("No output available. Press the Estimate button to generate results"), file = path) + cat(i18n$t("No output available. Press the Estimate button to generate SVM results"), file = path) } } @@ -648,17 +499,6 @@ download_handler( caption = i18n$t("Save SVM predictions") ) -download_handler( - id = "dlp_svm_pred", - fun = download_handler_plot, - fn = function() paste0(input$dataset, "_svm_pred"), - type = "png", - caption = i18n$t("Save SVM prediction plot"), - plot = .predict_plot_svm, - width = plot_width, - height = svm_pred_plot_height -) - download_handler( id = "dlp_svm", fun = download_handler_plot, @@ -670,7 +510,9 @@ download_handler( height = svm_plot_height ) -## 29. report / screenshot 监听 ----------------------------------------- +## 报告生成(空壳,保留接口) +svm_report <- function() invisible() + observeEvent(input$svm_report, { r_info[["latest_screenshot"]] <- NULL svm_report() diff --git a/radiant.model/man/cv.svm.Rd b/radiant.model/man/cv.svm.Rd new file mode 100644 index 0000000..11260bf --- /dev/null +++ b/radiant.model/man/cv.svm.Rd @@ -0,0 +1,22 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/svm.R +\name{cv.svm} +\alias{cv.svm} +\title{Cross-validation for SVM} +\usage{ +cv.svm( + object, + K = 5, + repeats = 1, + kernel = c("linear", "radial"), + cost = seq(0.1, 10, by = 0.5), + gamma = seq(0.1, 5, by = 0.5), + seed = 1234, + trace = TRUE, + fun, + ... +) +} +\description{ +Cross-validation for SVM +} diff --git a/radiant.model/man/plot.svm.Rd b/radiant.model/man/plot.svm.Rd new file mode 100644 index 0000000..2a62b49 --- /dev/null +++ b/radiant.model/man/plot.svm.Rd @@ -0,0 +1,21 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/svm.R +\name{plot.svm} +\alias{plot.svm} +\title{Plot method for the svm function} +\usage{ +\method{plot}{svm}( + x, + plots = "vip", + size = 12, + nrobs = -1, + incl = NULL, + incl_int = NULL, + shiny = FALSE, + custom = FALSE, + ... +) +} +\description{ +Plot method for the svm function +} diff --git a/radiant.model/man/predict.svm.Rd b/radiant.model/man/predict.svm.Rd index 96103d5..e759df6 100644 --- a/radiant.model/man/predict.svm.Rd +++ b/radiant.model/man/predict.svm.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/svm.R \name{predict.svm} \alias{predict.svm} -\title{Predict method} +\title{Predict method for the svm function} \usage{ \method{predict}{svm}( object, @@ -14,5 +14,5 @@ ) } \description{ -Predict method +Predict method for the svm function } diff --git a/radiant.model/man/print.svm.predict.Rd b/radiant.model/man/print.svm.predict.Rd index d65cec1..996b46d 100644 --- a/radiant.model/man/print.svm.predict.Rd +++ b/radiant.model/man/print.svm.predict.Rd @@ -2,10 +2,10 @@ % Please edit documentation in R/svm.R \name{print.svm.predict} \alias{print.svm.predict} -\title{Print predictions} +\title{Print method for predict.svm} \usage{ \method{print}{svm.predict}(x, ..., n = 10) } \description{ -Print predictions +Print method for predict.svm } diff --git a/radiant.model/man/scale_df.Rd b/radiant.model/man/scale_df.Rd index d5c196e..0353553 100644 --- a/radiant.model/man/scale_df.Rd +++ b/radiant.model/man/scale_df.Rd @@ -1,9 +1,11 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/nn.R +% Please edit documentation in R/nn.R, R/svm.R \name{scale_df} \alias{scale_df} \title{Center or standardize variables in a data frame} \usage{ +scale_df(dataset, center = TRUE, scale = TRUE, sf = 2, wts = NULL, calc = TRUE) + scale_df(dataset, center = TRUE, scale = TRUE, sf = 2, wts = NULL, calc = TRUE) } \arguments{ @@ -23,5 +25,7 @@ scale_df(dataset, center = TRUE, scale = TRUE, sf = 2, wts = NULL, calc = TRUE) Scaled data frame } \description{ +Center or standardize variables in a data frame + Center or standardize variables in a data frame } diff --git a/radiant.model/man/summary.svm.Rd b/radiant.model/man/summary.svm.Rd index 3e97ec3..ebdd11b 100644 --- a/radiant.model/man/summary.svm.Rd +++ b/radiant.model/man/summary.svm.Rd @@ -2,10 +2,10 @@ % Please edit documentation in R/svm.R \name{summary.svm} \alias{summary.svm} -\title{Summary method} +\title{Summary method for the svm function} \usage{ -\method{summary}{svm}(object, ...) +\method{summary}{svm}(object, prn = TRUE, ...) } \description{ -Summary method +Summary method for the svm function } diff --git a/radiant.model/man/svm.Rd b/radiant.model/man/svm.Rd index d7c5600..5b0d0e1 100644 --- a/radiant.model/man/svm.Rd +++ b/radiant.model/man/svm.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/svm.R \name{svm} \alias{svm} -\title{Support Vector Machine using e1071} +\title{Support Vector Machine} \usage{ svm( dataset, @@ -12,15 +12,10 @@ svm( lev = "", kernel = "radial", cost = 1, - gamma = "auto", - degree = 3, - coef0 = 0, - nu = 0.5, - epsilon = 0.1, - probability = FALSE, + gamma = 1, wts = "None", - seed = 1234, - check = NULL, + seed = NA, + check = "standardize", form, data_filter = "", arr = "", @@ -29,5 +24,5 @@ svm( ) } \description{ -Support Vector Machine using e1071 +Support Vector Machine } diff --git a/radiant.model/man/varimp.Rd b/radiant.model/man/varimp.Rd index a7931a6..0eb6704 100644 --- a/radiant.model/man/varimp.Rd +++ b/radiant.model/man/varimp.Rd @@ -1,9 +1,11 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/nn.R +% Please edit documentation in R/nn.R, R/svm.R \name{varimp} \alias{varimp} \title{Variable importance using the vip package and permutation importance} \usage{ +varimp(object, rvar, lev, data = NULL, seed = 1234) + varimp(object, rvar, lev, data = NULL, seed = 1234) } \arguments{ @@ -18,5 +20,7 @@ varimp(object, rvar, lev, data = NULL, seed = 1234) \item{seed}{Random seed for reproducibility} } \description{ +Variable importance using the vip package and permutation importance + Variable importance using the vip package and permutation importance } diff --git a/radiant.model/man/varimp_plot.Rd b/radiant.model/man/varimp_plot.Rd index dda339c..1480b81 100644 --- a/radiant.model/man/varimp_plot.Rd +++ b/radiant.model/man/varimp_plot.Rd @@ -1,9 +1,11 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/nn.R +% Please edit documentation in R/nn.R, R/svm.R \name{varimp_plot} \alias{varimp_plot} \title{Plot permutation importance} \usage{ +varimp_plot(object, rvar, lev, data = NULL, seed = 1234) + varimp_plot(object, rvar, lev, data = NULL, seed = 1234) } \arguments{ @@ -18,5 +20,7 @@ varimp_plot(object, rvar, lev, data = NULL, seed = 1234) \item{seed}{Random seed for reproducibility} } \description{ +Plot permutation importance + Plot permutation importance } diff --git a/radiant.quickgen/R/quickgen_ai.R b/radiant.quickgen/R/quickgen_ai.R index b5c2f75..21d68e0 100644 --- a/radiant.quickgen/R/quickgen_ai.R +++ b/radiant.quickgen/R/quickgen_ai.R @@ -1,6 +1,6 @@ # === 配置 === MODELSCOPE_OPENAI_URL <- "https://api-inference.modelscope.cn/v1" -MODELSCOPE_API_KEY <- Sys.getenv("MODELSCOPE_API_KEY", "ms-6638b00e-57e4-4623-996d-214e375d220f") +MODELSCOPE_API_KEY <- Sys.getenv("MODELSCOPE_API_KEY", "ms-5b9f3668-ea8e-4a2c-8cd3-a1a9ba04810b") MODEL_ID <- "deepseek-ai/DeepSeek-V3.1" # === 低层封装:单次对话 === -- 2.22.0