Global: use_gpu: true epoch_num: 200 log_smooth_window: 20 print_batch_step: 88 save_model_dir: ./output/rec_chinese_common_v2.0 save_epoch_step: 500 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 176] cal_metric_during_train: True pretrained_model: ./pretrain_models/ch_ppocr_server_v2.0_rec_train/ch_ppocr_server_v2.0_rec_train/best_accuracy.pdparams checkpoints: save_inference_dir: use_visualdl: false use_wandb: true infer_img: doc/imgs_words/ch/word_1.jpg # for data or label process character_dict_path: ppocr/utils/ppocr_keys_v1.txt max_text_length: 25 infer_mode: False use_space_char: True save_res_path: ./output/test/rec/predicts_chinese_common_v2.0.txt name: rec_chinese_common_v2.0 Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 warmup_epoch: 5 regularizer: name: 'L2' factor: 0.00004 Architecture: model_type: rec algorithm: CRNN Transform: Backbone: name: ResNet layers: 34 Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 256 Head: name: CTCHead fc_decay: 0.00004 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc ignore_space: True char_precision: True char_recall: True char_f1: True Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: ["./train_data/rec/train.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - RecAug: - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: ["./train_data/rec/val.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 128 num_workers: 4