import os import sys import glob import numpy as np import keras import tensorflow as tf from keras import Model from keras import backend as K from keras.regularizers import l2 from keras.engine import Layer,InputSpec from keras.layers.merge import concatenate from keras.callbacks import TensorBoard,Callback from keras.layers.advanced_activations import LeakyReLU from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from keras import initializers, regularizers, constraints,optimizers from keras.callbacks import ModelCheckpoint, LearningRateScheduler,TensorBoard from keras.layers import Add,Input,Conv3D,Convolution3D,Dropout,UpSampling3D,Concatenate,MaxPooling3D,\ GlobalAveragePooling3D,Dense,GlobalMaxPooling3D,Lambda,Activation,Reshape,Permute, PReLU, Deconvolution3D sys.path.append('../baseLayers/') from CommonLayers import NormActi,ConvUnit def VGGConvBlock(x,**kwargs): norm_func = kwargs.get('norm_func') activation_func = kwargs.get('activation_func') num_filters = kwargs.get('num_filters') kernel_size = kwargs.get('kernel_size',3) padding = kwargs.get('padding','valid') block_idx = kwargs.get('block_idx',1) atrous_rate = kwargs.get('atrous_rate',1) stride = kwargs.get('stride') num_units = kwargs.get('num_units') conv_first = kwargs.get('conv_first',True) dropout_rate= kwargs.get('dropout_rate',0) kernel_initializer = kwargs.get('kernel_initializer','he_normal') kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4)) block_prefix = 'VGG_block%02d'%block_idx # print ('number of units is ',num_units) for idx in range(num_units): x = ConvUnit(x,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters, kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix, kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, layer_idx=idx+1,conv_first=conv_first) if dropout_rate>0: x = Dropout(rate=dropout_rate,name='%s_dropout'%(block_prefix))(x) if stride>atrous_rate: x = MaxPooling3D(pool_size=stride,name='%s_pool'%(block_prefix))(x) return x def VGG(input_shape,**kwargs): num_blocks = kwargs.get('num_blocks',5) strides = kwargs.get('strides') atrous_rates = kwargs.get('atrous_rates') base_filters = kwargs.get('base_filters',32) norm_func = kwargs.get('norm_func') activation_func = kwargs.get('activation_func') kernel_size = kwargs.get('kernel_size',3) padding = kwargs.get('padding','valid') dropout_rate = kwargs.get('dropout_rate',0) classification_layers = kwargs.get('classification_layers') num_classes = kwargs.get('num_classes',1) kernel_initializer = kwargs.get('kernel_initializer','he_normal') kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4)) num_layers = [2,2,3,3,3] input_tensor = Input(shape=input_shape) layers = [input_tensor] # print ('type(dropout_rate',type(dropout_rate),dropout_rate) if type(dropout_rate)== float or type(dropout_rate)== int: dropout_rates = [dropout_rate for _ in range(num_blocks)] else: dropout_rates = dropout_rate real_stride_ratios = [] for block_idx in range(num_blocks): current_stride = strides[block_idx] current_atrous_rate = atrous_rates[block_idx] if current_stride>current_atrous_rate: real_stride_ratios.append(current_stride) else: real_stride_ratios.append(1) num_filters = base_filters * (2**block_idx) x = VGGConvBlock(layers[-1],norm_func=norm_func,activation_func=activation_func,num_filters=num_filters,kernel_size=kernel_size, padding=padding,block_idx=block_idx+1,atrous_rate=current_atrous_rate,stride=current_stride, kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, num_units = num_layers[block_idx],dropout_rate = dropout_rates[block_idx]) layers.append(x) ''' Add classification part ''' final_feature = classification_layers(name='VGG_classification')(x) if num_classes == 1: final_acti = 'sigmoid' else: final_acti = 'softmax' final_output = Dense(num_classes,activation=final_acti,name='VGG_final_output')(final_feature) model = Model(input_tensor,final_output) return model,layers,real_stride_ratios