import os import sys import glob import keras import tensorflow as tf from keras import Model from keras import backend as K from keras.regularizers import l2 from keras.engine import Layer,InputSpec from keras.layers.merge import concatenate from keras.callbacks import TensorBoard,Callback from keras.layers.advanced_activations import LeakyReLU from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from keras import initializers, regularizers, constraints,optimizers from keras.callbacks import ModelCheckpoint, LearningRateScheduler,TensorBoard from keras.layers import Add,Input,Conv3D,Convolution3D,Dropout,UpSampling3D,Concatenate,MaxPooling3D,\ GlobalAveragePooling3D,Dense,GlobalMaxPooling3D,Lambda,Activation,Reshape,Permute, PReLU, Deconvolution3D,Multiply,GlobalAveragePooling3D,Dense sys.path.append('./backbones') sys.path.append('./decoders') from backbones import * from decoders import * from model_utils import get_block def build_model(model_name,input_shape=None,parameter_list=None): if model_name == 'Res': resnet_builder = Resnet3DBuilder(**parameter_list[0]) result = resnet_builder.build_resnet_50(input_shape) else: func = get_block(model_name) if model_name == 'NoduleSegDecoder_proxima': pre_result = parameter_list[0] # print ('pre_result',pre_result) result = func(pre_result,**parameter_list[1]) else: result = func(input_shape,**parameter_list[0]) return result