import os import sys import keras import tensorflow as tf from keras import Model from keras import backend as K from keras.regularizers import l2 from keras.engine import Layer,InputSpec from keras.layers.merge import concatenate from keras.callbacks import TensorBoard,Callback from keras.layers.advanced_activations import LeakyReLU from keras.preprocessing.image import ImageDataGenerator from keras.layers.normalization import BatchNormalization from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from keras import initializers, regularizers, constraints,optimizers from keras.callbacks import ModelCheckpoint, LearningRateScheduler,TensorBoard from keras.layers import Add,Input,Conv3D,Convolution3D,Dropout,UpSampling3D,Concatenate,MaxPooling3D,Dot,\ GlobalAveragePooling3D,Dense,GlobalMaxPooling3D,Lambda,Activation,Reshape,Permute, PReLU, Deconvolution3D,\ Multiply,GlobalAveragePooling3D,Dense,Softmax sys.path.append('../baseLayers/') from CommonLayers import NormActi,ConvUnit def SpatialGather(x,probs,upsample_ratio=None): ''' x represents features and probs represents coarse segmentation prob map ''' batch_size,depth,height,width,num_classes = probs._keras_shape if upsample_ratio: upsample_ratio = 2 upsample_ratio = int(depth/x._keras_shape[1]) if upsample_ratio>1: x = UpSampling3D(size=upsample_ratio,name='SpatialGather')(x) num_features = x._keras_shape[-1] reshape_x = Reshape(target_shape=(depth*height*width,num_features))(x) # if num_classes == 1: # probs = Concatenate()([1-probs,probs]) # num_classes = 2 reshape_probs = Reshape(target_shape=(depth*height*width,num_classes))(probs) result = Dot(axes=1)([reshape_probs,reshape_x]) result = Reshape(target_shape=(1,1,result._keras_shape[1],result._keras_shape[2]))(result) return result def OCRModule(x,proxy,**kwargs): norm_func = kwargs.get('norm_func') activation_func = kwargs.get('activation_func') num_filters = kwargs.get('num_filters') kernel_size = kwargs.get('kernel_size',1) padding = kwargs.get('padding','same') atrous_rate = kwargs.get('atrous_rate',1) conv_first = kwargs.get('conv_first',True) dropout_rate= kwargs.get('dropout_rate',0) kernel_initializer = kwargs.get('kernel_initializer','he_normal') kernel_regularizer = kwargs.get('kernel_regularizer',l2(1e-4)) block_prefix = 'OCRModule' input_features = x._keras_shape[-1] query = x for layer_idx in range(2): query = ConvUnit(query,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters, kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_query', kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, layer_idx=layer_idx+1,conv_first=conv_first) key,value = proxy,proxy for layer_idx in range(2): key = ConvUnit(key,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters, kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_key', kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, layer_idx=layer_idx+1,conv_first=conv_first) value = ConvUnit(value,norm_func=norm_func,activation_func=activation_func,num_filters=num_filters, kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_value', kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, layer_idx=1,conv_first=conv_first) batch,query_depth,query_height,query_width,query_filters = query._keras_shape batch,key_depth,key_height,key_width,key_filters = key._keras_shape query = Reshape(target_shape=(query_depth*query_height*query_width,query_filters))(query) key = Reshape(target_shape=(key_depth*key_height*key_width,key_filters))(key) value = Reshape(target_shape=(key_depth*key_height*key_width,key_filters))(value) value = Permute(dims=[2,1])(value) sim_map = Dot(name='%s_SimMapDot'%block_prefix,axes=2)([query,key]) sim_map = Softmax(axis=-1,name='%s_SimMapSoftmax'%block_prefix)(sim_map) context = Dot(axes=2)([sim_map,value]) context = Reshape(target_shape=(query_depth,query_height,query_width,query_filters))(context) combine_feature = Concatenate()([x,context]) final_result = ConvUnit(combine_feature,norm_func=norm_func,activation_func=activation_func,num_filters=input_features, kernel_size=kernel_size,atrous_rate=atrous_rate,padding=padding,block_prefix=block_prefix+'_FinalCombine', kernel_initializer=kernel_initializer,kernel_regularizer=kernel_regularizer, layer_idx=1,conv_first=conv_first) return final_result