# -*- coding: utf-8 -*- import torch import torch.nn as nn class Normalize(nn.Module): def __init__(self): super(Normalize, self).__init__() def forward(self, data, min_value=-1000, max_value=600): new_data = data new_data[new_data < min_value] = min_value new_data[new_data > max_value] = max_value # normalize to [-1, 1] new_data = 2.0 * (new_data - min_value) / (max_value - min_value) - 1 return new_data