diff --git a/q25_14_ins_int8.py b/q25_14_ins_int8.py
new file mode 100644
index 0000000000000000000000000000000000000000..36fa3098625c767c2cfa873122f1789852e1f85d
--- /dev/null
+++ b/q25_14_ins_int8.py
@@ -0,0 +1,203 @@
+import os
+import re 
+import torch 
+import json 
+# import time
+# import pynvml
+from tqdm import tqdm
+import torch.distributed as dist
+from vllm import LLM, SamplingParams
+os.environ["NCCL_P2P_DISABLE"] = "1"
+
+torch.cuda.empty_cache()
+os.environ["TRANSFORMERS_OFFLINE"] = "1"
+os.environ["HF_DATASETS_OFFLINE"] = "1"
+os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
+texts_path = "/home/limeng/NLP/LLM/data/jcza/record_text2.txt"
+model_path = "/home/limeng/NLP/LLM/model/Qwen2.5-14B-Instruct-GPTQ-Int8"
+output_path = "/home/limeng/NLP/LLM/code/0220/result"
+
+llm = LLM(model=model_path, dtype="half",gpu_memory_utilization=0.9)
+sampling_params = SamplingParams(temperature=0.3, top_p=0.3, max_tokens = 1500)
+
+
+with open(texts_path, "r", encoding="utf-8") as file:
+        for i,line in enumerate(file):
+            medical_record = line.strip()  # 处理每一行,去除首尾空白字符
+            prompt = f"""
+你是一个专业的医疗信息抽取助手。请从以下病历数据中严格按照#### 示例 JSON 提取字段信息,并确保:
+1. **字段必须完整**,与示例 JSON 结构完全一致,不可缺失/新增/改动任何字段
+2. **重点字段精确**:
+   - 手术史需抽提所有手术名称+时间(格式:"手术名称": "时间")
+   - 化疗方案需按"方案名": {{时间+具体用药列表}} 格式提取
+   - 放疗方案需按"方案描述": {{时间+次数+剂量}} 格式提取
+3. **严格空值处理**:
+   - 字符串字段填"无"
+   - 列表/字典字段填空列表[]/空字典{{}}
+   - 嵌套结构需保持完整(如肿瘤患病史必须含"肿瘤类型"/"肿瘤结局"字段)
+4. **严格JSON格式**:
+   - 保持与示例完全相同的缩进/标点格式
+   - 确保所有括号闭合,逗号正确
+   - 生成第一个完整JSON后立即停止,禁止解释性文字   
+
+#### 病历数据
+{medical_record}
+
+#### 示例 JSON
+{{
+    "消瘦": "有",
+    "呕吐": "有",
+    "恶心": "有",
+    "腹部肿块": "有",
+    "腹胀": "有",
+    "腹痛": "有",
+    "里急后重": "有",
+    "腹泻": "有",
+    "大便形状改变": "有",
+    "排便困难": "有",
+    "黑便": "有",
+    "便血": "有",
+    "大便习惯和性状改变": "有",
+    "肠梗阻": "有",
+    "肠穿孔": "有",
+    "手术史": {{
+        "直肠癌经腹前切除+末端回肠造口术": "2017-01-11日",
+        "冠脉支架置入术":" 2019年",
+    }},
+    "肝转移": "有",
+    "肺转移": "有",
+    "腹膜转移": "有",
+    "骨转移": "有",
+    "远处转移": "有",
+    "锁骨上转移": "有",
+    "腹股沟转移": "有",
+    "腹膜后淋巴结转移": "有",
+    "其他远处淋巴转移": "无",
+    "化疗方案": {{
+        "2011-1-12行XELOX方案": 
+        {{"æ—¶é—´": "2011-1-12"
+        "具体用药": [
+        "卡培他宾1.5g 2/日d1-14",
+        "奥沙利铂200mg d1"
+                    ]
+        }},
+        "2022-7-17、8-9行FOLFOX+西妥昔单抗方案":
+        {{ "时间": "2022-7-17、8-9"
+        "具体用药": [
+        "奥沙利铂140mg 静滴D1",
+        "亚叶酸钙0.6g 静滴D1",
+        "5-FU 0.4g 静滴D1",
+        "5-FU 4.0g 化疗泵入44h",
+        "西妥昔单抗800mg 静滴D1"
+        ]}}
+    }},
+    "放疗方案": 
+    {{
+        "盆腔复发灶": {{
+            "时间": "2023-04-20至2023-05-30",
+            "次数": "25",
+            "单次剂量":"2Gy",
+            "总剂量":"50Gy"
+        }},
+        "照射方法为适形调强放疗IMRT,分割方法为常规分割,疗效评估为PR": {{
+            "时间": "2021年11月15日开始,2021年12月24日结束",
+            "次数": "25",
+            "单次剂量":"2Gy",
+            "总剂量":""
+        }},
+    }},
+    "仍需治疗的其他疾病情况": ["高血压", "糖尿病"],
+    "入院前仍在服用的治疗药物": ["硝苯地平缓释片", "达格列净", "格列齐特"],
+    "高血压史": "有",
+    "伤寒史": "有",
+    "结核史": "有",
+    "病毒性肝炎史": "有",
+    "糖尿病史": "有",
+    "冠心病史": "有",
+    "冠脉支架放置": "有",
+    "脑卒中史": "有",
+    "其他非肿瘤疾病": [
+        "慢性乙型病毒性肝炎",
+    ],
+    "肿瘤患病史": {{
+        "肿瘤类型": "左肺腺癌",
+        "肿瘤结局": "治愈"
+    }}
+    "吸烟史": {{
+        "吸烟年数": "25年",
+        "日吸烟量": "10支/天",
+        "是否戒烟": "已戒烟15年"
+    }},
+    "饮酒史": "有"
+    "婚育史": {{
+        "是否已婚": "已婚",
+        "是否已育": "已育",
+        "已育数量": "1女"
+    }},
+    "结直肠癌家族史": {{
+        "遗传性结直肠癌类型": "无",
+        "亲属类型": "弟弟",
+        "其他遗传性肿瘤": "结肠癌"
+    }},
+    "体温": "36.0℃",
+    "呼吸": "18次/分",
+    "心率": "80次/分",
+    "血压": "120/80mmHg",
+    "BMI": "19.6"
+    "直肠指诊": {{
+        "直肠指诊姿势": "膝胸位",
+        "直肠指诊是否触及肿块": "有",
+        "直肠指诊肿块下缘到肛缘距离": "5cm",
+        "直肠指诊肿块下缘到齿状线距离": "无",
+        "直肠指诊肿块活动度": "尚可",
+        "直肠指诊指套推出是否染血": "有"
+    }},
+    "贫血貌": "有",
+    "巩膜黄染": "有",
+    "锁骨上淋巴结肿大": "有",
+    "腹壁静脉曲张": "有",
+    "肠形": "有",
+    "腹部压痛": "有",
+}}    
+"""
+            try:
+                # 调用模型生成结果
+                outputs = llm.generate(prompt, sampling_params)
+                model_output = outputs[0].outputs[0].text
+                print(model_output)
+                # 尝试提取 JSON 部分
+                json_str = re.search(r'```json\n(.*?)\n```', model_output, re.DOTALL)
+                if json_str:
+                    json_str = json_str.group(1)
+                    result_json = json.loads(json_str)
+                else:
+                    # 如果未找到 JSON 部分,直接保存原始文本
+                    json_str = re.search(r'#### JSON 提取结果\n(.*?)\n#### JSON 提取结果', model_output, re.DOTALL)
+                    if json_str:
+                        result_json = json.loads(json_str.group(1))
+                    else:
+                        # 如果未找到 #### JSON 提取结果 格式,尝试提取 #### JSON 输出 格式
+                        json_str = re.search(r'#### JSON 输出\n(.*?)\n#### JSON 输出', model_output, re.DOTALL)
+                        if json_str:
+                            result_json = json.loads(json_str.group(1))
+                        else:
+                            json_str = re.search(r'#### JSON 提取结果\n(.*?) 根据提', model_output, re.DOTALL)
+                            if json_str:
+                                result_json = json.loads(json_str.group(1))
+                            else:
+                                result_json = {"error": "Invalid model output format", "original_text": medical_record, "model_output": model_output}
+
+                # 保存结果到 JSON 文件
+                file_name = f"long_txt{i}.json"
+                file_path = os.path.join(output_path, file_name)
+                with open(file_path, 'w', encoding='utf-8') as f:
+                    json.dump({"text_record": medical_record, "extracted_info": result_json}, f, ensure_ascii=False, indent=4)
+
+            except Exception as e:
+                # 捕获异常并记录错误
+                print(f"Error processing record {i}: {e}")
+                # 保存原始文本
+                file_name = f"long_txt{i}_error.json"
+                file_path = os.path.join(output_path, file_name)
+                with open(file_path, 'w', encoding='utf-8') as f:
+                    json.dump({"text_record": medical_record, "error": str(e)}, f, ensure_ascii=False, indent=4)
\ No newline at end of file