import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from gensim.test.utils import datapath, get_tmpfile from gensim.models import KeyedVectors from gensim.scripts.glove2word2vec import glove2word2vec # glove:相关的词,词向量的大小,比word2vec强 # 读取 Excel 文件 df = pd.read_excel('../datas/hebing.xlsx', sheet_name='Sheet1') # glove2word2vec(df) # model = KeyedVectors.load_word2vec_format(df) # most_similar = model.most_similar('修复') # print(most_similar)